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ABSTRACT

Numerous suggestions have been made regarding measurements of meteoro-
logical significance which might be made with a laser radar (lidar) carried
in a satellite. In this study a wide variety of possibilities is examined,
and it- is concluded that the most important thing that can be done with
reasonable amounts of power is to provide routine height and dénsity data
on cirrus cloud. Cloud-top elevations of lower cloud would also be

determined.

A review of the literature emphasizes the widespread acceptance of
cirrus as an important diagnostic tool of meteorology in spite of the
traditional difficulty of observing it reliably from the ground, from

aircraft, or even via satellite television.

In addition to its role as an indicator of large scale circulation
features, such as cyclones and jetstreams, cirrus cover is currently of
considerable interest in connection with infrared radiation studies of
the earth. It is shown that even extremely low-density cirrus shields
are capable of introducing several degrees of error into radiometric

determinations of temperature made from space.

Calculations, supported by experimental backscatter measurements made
at SRI with a ground-based pulsed ruby lidar, show that it should be
barely possible to measure low-density cirrus cloud at night from a
1000 to 1500 km satellite using a radiated energy of one joule per sounding

and a receiving aperture of one square meter.

This is roughly equivalent to proposing that within the next decade
we duplicate in space equipment performance which is currently being

achieved on the ground under controlled laboratory conditions.
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Soundings frequent enough to provide complete map-like coverage are
not presently feasible, but the unique ranging capability of the lidar,
properly used in conjunction with television or HRIR, could provide very
important supplementary information with a relatively small number of
samples. A sounding rate of 1.8 per second is suggested as a goal, but

lower rates might be considered.

The equipment requirements for all methods currently envisioned for
measuring gaseous temperature, density, and composition by lidar from
satellite elevations are shown to call for several orders of magnitude
more power, and thus must be considered to be only extremely remote
possibilities from the standpoint of the present state of laser tech-

nology.

It is recommended that planning toward a meteorological lidar
satellite be continued with heavy emphasis on more precise definition
of the optical and meteorological characteristics of potential atmo-

spheric targets and improvement of lidar system efficiency.
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I INTRODUCTION

The virtually unique capabilities of lidar (laser or optical radar)
equipment for observing cloud, clear-air aerosol, and even molecular
gases suggest its possible utilization in meteorological satellites for
atmospheric probing. This is the final report of an exploratory investi-
gation of the meteorological utility of such a system, the general
chargcteristics it should have, the possible system counfiguration, and
other factors which should be taken into consideration in arriving at
a decision whether or not to undertake further studies and experiments
directed toward possible ultimate development of such a system. In
this investigation a conscious effort was made to at least make reference
or mention, however brief, of all the factors involved. These turned
out to be so numerous that time and funds did not permit as thorough an
investigation of some as their importance certainly deserves. Accord-
ingly, this report should be regarded as a preliminary examination of

the problem,

Optical wavelengths are well suited for meteorological probing
since they are sufficiently small relative to the common atmospheric
aerosols that the latter exhibit radar backscattering cross sections
large enough to be useful. While prelaser optical radars using spark
sources have been built and even proposed for use in meteorological
satellites, currently available lasers now provide optical energy

sources which are much more suitable in nearly all respects.

Major attention is focused on the giant-pulse, crystal or solid-
state type of lidar system.* While the high efficiency, stability,
ruggedness and relative simplicity of gas and diode-junction types

of lasers would otherwise make them important contenders for a place

* A glossary of the more specialized laser and meteorological terms is

inciuded herein ior the beneiit ol the reader not well versed in one
or the other of these fields.



in the system, the peak power of their emissiouns is at present many
orders of magnitude less than that of solid-state lasers, and thus
their ability to provide the all-important range discrimination from
satellite altitudes is limited, at least without the use of very

elaborate signal-processing techniques.

Impressive progress has been made in the development of these
types of lasers during the course of this 15-month study. Since
average power levels from CW and high-PRF lasers are now comparable to
those discussed herein for the giant-pulse mode, methods of employing
CW, Doppler and pulse-Doppler radar techniques will need to be reviewed
constantly for applicability to the meteorological problem. At present,
however, the pulsed ruby lidar provides a performance standard against

which any new contenders must compete.

Although, as will be discussed later, observations of a more
sophisticated nature have been proposed, the decision was reached early
in the course of this investigation to concentrate primary attention
on the relatively straightforward capability of the giant-pulse lidar
to obtain simple range information, principally on atmospheric aerosols.
This decision was made on the basis of several years of firsthand
experience in the adjustment and operation of lidar equipment which,
except in its simplest and ruggedest form, is clearly still more of
a laboratory than a practical instrument for field use (much less an
instrument(that could sustain its delicate adjustments during the shock
and vibration of a satellite launching and operate unattended for weeks
or months in the hostile environment of space). It is our considered
opinion it is clearly beyond the state of the art to construct a lidar
which requires very precise temperature control {on the order of a
degree or so Kelvin) and optical alignment and adjustment even more
precise, and the use of substantially greater powers than those re-
quired in ordinary ranging lidar systems. Such characteristics
would be required to accomplish some of the more sophisticated spectro-
scopic observations that have been suggested and are mentioned below.
It has been our approach that until the theoretical possibility of

any observation has at least been confirmed by demonstration in the




free atmosphere we should not give it detailed consideration as a possible
lidar satellite observation or experiment. While time and the rapid
advances of laser and detector technology may very well solve many (if

not all) of the practical objections that can be raised against more
complex systems, this investigation is concerned with what could con-
ceivably be accomplished within perhaps five to eight years, based upon

what is already being done with laboratory-type ground-based equipment.



II POSSIBLE METEOROLOGICAL USES FOR SATELLITE-BORNE LIDAR

A. General

The list of known atmospheric constituents potentially detectable
by a lidar-equipped meteorological satellite is impressive enough. In
this section we enumerate the wide range of possible observations, with
a minimum of attention to technical feasibility. Many of the phenomena
mentioned below could 523 be detected with the lidar system we propose,
which has as the upper limit of its capability the bare detection of the
Rayleigh backscatter from the atmosphere at an altitude of 10 km, Until
surface~based lidar observations have provided more information about
the occurrence and optical properties of some of these phenomena, their
measurement from satellite altitudes must necessarily be highly specu-

lative.

Starting at the top of the atmosphere, the first major particulate
constituents to be encountered are the meteoric dust layers or trails.
Micron and submicron sized particles drifting in from outer space or
left behind as debris from the downward plunge of larger bodies are
plentiful, especially on the forward hemisphere of the earth as it
moves in orbit around the sun. The ability of lidar to detect meteoric
dust seems possible if Fiocco's observations (1963)* are a reliable
criterion. The global observation of meteoric dust on a systematic
basis may allow more detailed examination of possible relationships be-
tween precipitation and the earth's encounter with or attraction of extra-

terrestrial matter (Roberts, 1965; Twitchell, 1965).

In this same region of the upper atmosphere the lidar may detect
the elusive "leuchtstreifen" (GOtz, 1942; Hoffmeister, 1946). Again,

Fiocco has reported observation of particulate matter concentration in

* All references mentioned in the text are included in the Bibliography
at the end of this report.



in this region (90 to 180 km)., Observation of these 'clouds" is evidently -
SO0 rare that their very existence is somewhat problematical, but surface-

based lidar observations may clear up this question in a few years,

Of course at this level and below lidar might fortuitously detect
the exhaust plumes of rocket engines and the trails of re-entering

artificial satellites.,

At somewhat lower levels (80 to 90 km) the noctilucent clouds
present themselves as very interesting targets., If these can be detected
by satellite-borne lidar, many questions concerning their global distri-
bution, diurnal variation, and vertical structure and possibly their
nature and origin may conceivably be resolved. Efforts to detect these
clouds with surface-based lidar have not yet (so far as we have been
able to determine) been successful; but it seems not unreasonable to
expect that their observation only awaits the assembly of suitable

equipment and its operation while the clouds are within range.

In a similar category with noctilucent clouds but in the 20 to 30 km
layer are the rare nacreous, or mother-of-pearl clouds. Much the same
type of information concerning these clouds may be obtained from their
observation by lidar as in the case of the noctilucent clouds. SRI
scientists have reported the observation of what definitely appear to

be particulate layers in this region (Collis, 1966) .,

In this region of the upper atmosphere are also to be found the
maximum ozone concentration and Junge's 22 km ammonium sulfate layer
(Mossop, 1963). The latter has been tentatively detected by surface-
based lidar (Collis, 1966), and the former may be detectable by its
attenuating effects on high-powered infrared or ultraviolet lidar
systems (Schotland, 1965). Also in this region are the cirrus blowoffs
from especially violent thunderstorms and dust from major volcanic and
H-bomb surface explosions, all of which are promising phenomena for
observation. Considerable interest is currently centered on the
circulation of the atmosphere in this region, such as the vertical-
transport rates and processes affecting the transport of aerosols and

ozone from above to below the critical "Junge layer' near 22 km.




The highly reflective properties of most of the usual cloud types
of the lower, middle, and upper troposphere make them excellent lidar
targets about which more will be said later. Precipitation, although
quite reflective to laser beams (Ligda, 1964) will normally occur
beneath rather thick and opaque cloud formations and so should only
rarely present a detectable target. An exception to this may be snow
generated from thin cirrus. Contrails should be readily detectable,
but whether observations can be made at short enough intervals to
distinguish them from thin cirrus layers and trails is open to question,

at least in early-generation systems,

While requiring laser power levels which present the possibility of
causing eye damage to persons on the surface who might accidentally look
straight up the beam toward the lidar satellite, interesting possibilities
exist for making worthwhile observations of atmospheric conditions in the
cloud-free regions of the troposphere by means of backscattering from the
relatively low-density but all-pervasive particulate matter. Such
phenomena as dust storms which were apparent in the TIROS VII observa-
tions over the Persian Gulf on 11 April 1964, haze and smoke layers,
volcanic dust, and regions of blowing snow all appear to be observable
with a suitably designed lidar satellite system. It has been suggested
that air masses and the boundaries between them may be distinguished by
lidar since a ''sea breeze' front has at least once apparently been
observed with a surface-based lidar by the aerosol discontinuity across
it (Collis, 1964). Those temperature inversions accompanied by smoke,
haze, and dust variations are also within the realm of possibility of
detection. Inasmuch as the tropopause is not infrequently coincident
_with the boundary between aerosol-laden tropospheric air and the less
turbid air of the stratosphere, the height of this important region of
the atmosphere may also occasionally be subject to satellite lidar

observation.

The above summarizes those phenomena for which there seems to be
at least a slight hope of observation with a satellite-borne pulse lidar
system of adequate power and receiver sensitivity. It has been suggested

that additional atmospheric phenomena might also be detectable by various
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optical systems incorporating lasers and more sophisticated signal-
analysis techniques. It is instructive to briefly discuss those which
have come to our attention and note the special technological and

practical problems each evidently presents.

B. Observations of Unknown Practicality

1., Clear-Air Turbulence

There are two suggested ways in which lidar systems might possibly
be able to detect turbulent regions in cloud-free air (Zirkle, 1966).
The first is based upon the use of the Doppler shift of the backscattered
return somewhat along the approach used with Doppler radar to determine
the component of raindrop velocity along the beam. The other is based
upon the way that radar detects turbulent regions in thunderstorms,
namely by distinctive patterns or characteristics of the precipitation
echoes. There has been hope that lidar might operate in a similar
fashion from the aerosol return always present to some degree even in

very clean air,.

Even at very short range, no positive observational evidence with
lidars has yet been obtained that either of these hypotheses is correct
despite the considerable experimental effort expended so far in their
evaluation (Franken, Jenney, and Rank, 1965; Breece et al, 1966). Also,
there is as yet no proof from other types of observations that significant
aerosol or density gradients are present in turbulent regions of the
upper or lower atmosphere. A satellite lidar system for CAT detection
would evidently need to observe over large areas with exceedingly good

horizontal and vertical resolution to provide useful information.

2, Atmospheric Density

Following the approach of scientists who have employed searchlight
beams to measure upper-atmosphere density by Rayleigh molecular back-
scatter, experiments have been performed with lidars toward the same
goal. To date, these have not been highly successful because of the
difficulty of measuring the intensity of the very weak returns obtained,

although the potentialities are interesting. The need is for much more




power and a shorter interval between observations to exploit the benefits
obtainable from signal integration. Because the presence of even a very
few ice crystals or water droplets can result in erroneous determination
of molecular backscatter, complications exist in the selection of optimum
beam cross sections., Further studies of the short-term density variations
of the upper atmosphere are needed to assess how well widely spaced
satellite lidar observations can represent general conditions.

3. Vertical Atmospheric Gas-Density Profile by Selective
Attenuation

Experiments have been made and are currently in progress (Schotland,
1965) to determine whether lidar systems can be made to function reliably
at two wavelengths, one at some atmospheric-absorption band or line such
as water vapor and the other at a nearby absorption-free wavelength of
the spectrum. Theoretically it should be possible by this means to
determine the density profile of the particular gas along the beam with
such a system by comparison of the relative intensity of the returns
at the two wavelengths until backscatter in the attenuated wavelength

is reduced below measurable levels.

At the time of this writing (April 1966) no reports indicating that
this observation had been successfully accomplished have yet come to the
attention of the writers. Brief experiments at SRI to temperature-
tune an air-cooled ruby laser to the water-vapor absorption band at
6943.82 emphasized the difficulty of maintaining adequate temperature
control (the absorption line is only a few angstroms wide). Difficulties
are introduced by the variation of the laser-rod temperature during its

pumping cycle, but these may be overcome by more efficient cooling.

With no observational experience yet available on which to base
estimates of the accuracy with which density profiles could be measured
or the depths to which the atmosphere could conceivably be probed from
a satellite, the possibility of making this observation with a satellite
lidar is indeterminable except on a theoretical and speculative basis
at this time. It is not at all improbable that the technical problems

can and will be solved, perhaps quite soon, and this highly worthwhile



experiment can be accorded a place in the list of potential lidar

satellite observations,

4. Molecular Structure Observation by Raman-Line Observation

The idea behind this suggested observation is to exploit the Raman
effect (shifts in molecular vibrational levels in gases and liquids
when excited by electromagnetic radiation) which results in rotational
emission lines at different wavelengths from the excitation wavelength.
Given sufficient spectral frequency resolution and accuracy of determina-
tion of line intensity, information about the temperature and species
conteht of a gas mixture can be obtained. Again, demonstrations that
this is a practical observation in the free atmosphere using lasers
have apparently not yet been made even at short range, so reliable data
are lacking on which to base estimates of system power, sensitivity,
and stability. Other aspects of this suggested observation must also
be tested in the real atmosphere before its practicability can be

ascertained with any degree of confidence.

5, Gaseous Species Observation by Resonant Backscatter

By radiational excitation of a gas at an appropriate wavelength
its molecules may absorb and reradiate very strongly. A lidar based
on this principle might radiate at such wavelengths. The lidar must
necessarily function in an absorption band or line of the spectrum,
which of course attenuates the energy available for working at greater
ranges than would be the case otherwise because much of the energy
incident is absorbed and re-emitted. This experiment, like those
suggested above, is theoretically possible; however no actual observa-
tional evidence that it can be accomplished at available laser wave-

lengths is known.

6. Differentiation Between Water-Droplet and Ice-Crystal Clouds

Because of the high degree of polarization of some types of
laser-system beams, some investigators have wondered about the possi-
bility of distinguishing between the backscattering produced by
spherical cloud droplets of middle and lower cloud types and the

10




asymmetrical, sometimes specularly reflecting ice crystals of cirrus
clouds. Polarization techniques are exploited in microwave radar to

eliminate the return from spherical rain drops.

The practicality of this suggestion has not yet been carefully
examined; some degree of difficulty is expected because of depolariza-
tion of the beam along the path to and from the target. The extent

to which this takes place is also uncertain at this time.

While advances in electro-optical technology may shift these
several suggested experiments from the "theoretically possible" to the
"actually possible" and even "highly desirable' categories, it seems
more worthwhile to concentrate our attention on the possibilifies which
have--at least at present--a more reasonable expectation of fulfillment
in the foreseeable future. Considering those observations which appear
to be possible given a lidar satellite with the capability of detecting
Rayleigh backscatter at 10 km above the surface, the extent to which
these will be of interest to meteorologists, physicists, and operational

users may now be broadly considered.

C. Importance of Possible Observations

l. Scientific

Putting a lidar aboard an experimental meteorological satellite
may be considered worthwhile and interesting from a research or experi-
mental point of view, just as was the first series of TIROS satellites.
As has been learned, prior to the advent of the weather satellites even
the best high-altitude aerial and rocket photographs of cloud cover
hardly hinted at the wealth of information which is now routinely obtained
on a global basis from the satellites. Similarly, it is reasonable to
expect that since practically nothing is known about the global occur-
rence and distribution of thin high-level cloud layers, a great deal
of entirely new and fresh information about these difficult-to-observe
clouds will become available with the advent of the lidar satellite.
To the physical meteorologist the data should be of considerable interest

because of the influence of these cloud systems upon incoming and
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outgoing radiation. The cloud physicist should gain new insight into
the formation and dissipation of high cloud systems, the possible cosmic
influences upon them, and the nature and extent of their influence upon

precipitation formation at lower levels.¥

The synoptic meteorologist
will examine the data to learn more about the source and sink regions

of high-level clouds and their relationship to upper-level air movement.

It is a virtual certainty that, because of the limited number of
lidar and searchlight observations of the upper atmosphere so far
obtained, new and possibly significant optical-wavelength scattering
layers may be found in the stratosphere and mesosphere. Gegenschein
and zodiacal light both provide evidence of substantial particulate
concentrations at very high levels and it may be supposed that other
concentrations may exist in such low density or position with respect
to the sun that they have heretofore completely eluded detection. While
on this subject, it might be noted that the enormous sensitivity of
lidar to particulate scattering offers opportunities for experiments
involving the deliberate injection of highly reflective particles into
the upper atmosphere for the observation of their subsequent motion
(Langer and Stockham, 1960). Ground-based lidar can readily detect
very thin contrails of jet aircraft and even their exhaust trails at a

range of several miles.

To summarize, experimental or developmental lidar satellites could
reasonably be expected to provide new data for study of the interrelation-
ships between the mesosphere and stratosphere and possibly even the

exosphere.
2. Operational

The operational value of lidar satellite observations will necessar-

ily depend greatly upon the results of research using data obtained by

* Specific reference may be made to W. O. Roberts' suggestion (1965)
that a cirrus-cloud sheet may develop over a region subject to an influx
of solar particles. According to Twitchell (1965) plans are being
formulated for a special study on the occurrence of cirrus clouds over

auroral regions to check some of the aspects of Roberts' hypothesis.
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developmental systems, i.e., the correlations found between lidar
satellite observations and important weather conditions which precede,
attend, or follow them. Because of the numerous uncertainties involved,
any suggested operational applications are exceedingly speculative and
those set forth below are only offered with this understanding clearly
in view.

(1) Jet-stream location by distinctive cirrus-cloud distribution

(2) Minimum and maximum temperature and frost forecasting as
influenced by subvisible middle and high cloud layers

(3) Cloud-top determination and vertical structure of upper cloud
systems for various aeronautical operations

(4) Height and structure of tropopause for meteorological analysis

(5) Horizontal and vertical water-vapor distribution (if such
laser observations become possible)

(6) Differentiation between overcast and clear snow-covered areas
(7) Temperature and density determination from molecular scattering
in the upper atmosphere.
Of course many of the above operational uses would require con-
sideration of additional observational information such as TIROS-type

cloud observations or Nimbus-type HRIR observations.

Users other than meteorologists may find operational applications
for real-time lidar satellite observations. Photo and visual recon-
naissance activities may be assisted in planning missions by more
precise knowledge of the turbidity of the lower atmosphere or precise
information on the height and thickness of cloud layers known to be
present from TIROS cloud observations. By analysis of the polarization
and intensity of the specular return from the sea surface, some infor-
mation concerning waves and the low-level wind velocity creating them

may be obtained.

13



I11I RATIONALE FOR SEIECTING CIRRUS AS THE MAJOR TOPIC OF THIS STUDY

During the initial phase of this project, a number of meteorologists
both outside and within the Institute and with interests in both research
and operations were polled for ideas on what a lidar satellite could and
should do to justify its existence. While the responses were of course
quite varied and provided the basis for many of the listings in Sec. II,
the application which appeared on virtually every list was the mapping

of cirrus cloud.

From an equipment point of view, the use of cirrus as the target
for an initial satellite lidar effort offers several obvious advantages.
It is the first visible feature of undisputed meteorological significance
to be encountered when looking down from satellite altitudes; it occurs
in systems of large (often global) extent; it is difficult to observe
by any presently known technique since low cloud frequently masks it
from view either from the ground or from satellite television. Finally,
the scattering cross sections of typical cirrus clouds, while small
compared to those of other clouds or even the normal aerosol content
of clear air at sea level, are large compared to those of molecular

constituents at any altitude.

In short, monitoring of cirrus is about the easiest job that can be
envisioned for a satellite lidar. As will be shown, even this is con-
sidered to be a very marginal proposition with present technology.

Until it is shown that cirrus can be successfully monitored, there
seems to be little point to considering appreciably more elaborate

systems without more justification than is evident so far.

Accordingly, it was decided early in the project to devote a major
effort to defining the meteorological significance of cirrus cloud and
to accumulate the data on physical and optical characteristics and
glohal dicstribution required to evaluate the technical feasibility of

monitoring it from satellite altitude with lidar.
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During the ensuing year, this decision was justified by an increased
appreciation of the value of cirrus-cloud observations; both to opera-
tional meteorology and to radiation studies; of the need for more
quantitative data on cirrus; and of the technical problems that need

to be overcome in order to achieve even this initial goal.
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IV CIRRUS-CLOUD FORMS

A. General

Cirrus clouds are generated by meteorological disturbances that
range from small-scale thunderstorms to large-scale tropical and
extra-tropical cyclones. With thunderstorms, the cirrus appears as
broad streamers of cloud flowing with the prevailing wind at high
altitudes. With cyclones the cirrus appears as a gigantic sheet of
cloud (as much as 1200 X 1200 nautical miles in area) over and in
advance of the system. The upper tropospheric wind field with these
systems may transport such cirrus thousands of miles downwind from its
parent system, There is evidence that jet streams which are associated
with major circulation systems not only transport cirrus but in many
instances also contribute to its generation. Here the typical pattern
is one of a cirrus band or series of bands some 50 to 500 miles wide,
located on the anticyclonic or warm side of the jet stream (in the
northern hemisphere, the right side looking downwind) and extending

some 1000 to 2000 nautical miles in length.

Naturally, the hope arises that through a better identification
and description, observations of cirrus can provide useful information
on the nature and location of its parent system or on the nature of
the upper-level wind field in which it becomes imbedded. If it can,
then a device capable of providing detailed cirrus observations will

become an important tool in analysis and prediction.

Of particular value would be knowledge of the intensity and
structure of tropical or extratropical cyclones and jet streams since
these systems determine the current and future states of weather.

Also, a description of the presence and/or characteristics of cirriform
clouds would be valuable to radiation studies. It has obvious value
to aviation since cirriform clouds can be troublesome to such activities

as jet aircraft refueling or rendezvous, celestial uaviga
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tracking, or photoreconnaissance.
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To evaluate the range-finding capability of the lidar satellite
in the detection of cirrus clouds, it has been considered of fundamental
interest to examine (on the basis of presently available data) (a) where
and when cirrus clouds most frequently occur, (b) the associated con-
figurations and dimensions of cirrus as seen from satellite altitude,
and (c) what scanning patterns and spatial "sounding' coverage will be

desired by an analyst and can be obtained from a satellite.

Complete data on the foregoing points have not yet been accunulated
on a global or hemispheric basis for the following reasons: (a) cirrus
often cannot be observed from the ground when it is believed to be most
abundant (during bad weather conditions), (b) aircraft observations
are only available for some specific situations and localities and
therefore should not be generalized, and (c) cirrus, as it can be
observed with presently available TIROS vidicon data, is difficult to
map on a global or hemispheric scale because of inadequate satellite
data coverage in space and time, not to mention interpretational

problems.

The data on cirrus collected during the course of this project was
first organized into an internal SRI Technical Memorandum, as yet
unpublished, which was used as basic reference material by all project
personnel. A condensation of this memorandum is included herein as
Appendix A which, it is believed, will be of particular use to readers
with little meteorological background but who have an interest in
meteorological satellites. The material in the following section

consists principally of conclusions drawn from Appendix A.

B. Data Coverage Recommended for Mapping Cirriform Cloudiness

Assuming that detection and mapping of cirrus clouds is desirable,
a question then follows as to the form and density of the observation.
This question ultimately must be answered with due regard for the
engineering considerations discussed in other sections of this report.
However, for the present we will assume only that for the lidar (as
for any active system) the cost and complexity of the required equipment

will increase with the number of soundings required and that from
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satellite altitudes the absolute magnitude of the problem is such that
continuous coverage with data density comparable to television or HRIR
is out of the question. Thus it is important at this point to examine
from a meteorological viewpoint what is the minimum sampling density

which could be useful.

In very basic terms, the operational meteorologist is interested
first in the simple presence of cirrus cloud, and secondly in how much
is present in what general area. Then he may become interested in the
small-scale conformation. The latter is of much concern to the cloud

physicist.

If large quantities of cirrus observations by satellite-borne
lidar are to be made to evaluate the significance of cirrus in analysis
and forecasting of tropical and extra-tropical cyclones, the density of
data coverage should preferably be such that cirrus features on the
mesoscale of the thunderstorm cell (3 to 10 nmi) can be detected and
identified. This should be especially applicable to tropical and
subtropical areas where the importance of convective cells and the
cirrus generated therefrom in the intensification and development of
tropical cyclones is recognized. On the other hand, as previously
stated, cirriform coverage generated from a single tropical or extra-
tropical cyclone of interest may extend over an area in excess of
1200 x 1200 nmi; with respect to jet streams, the cirrus often appears
in bands of extended length (2000 miles or more). Coordinated data
coverage should be extensive enough that complete systems of this size

can be examined.

While one data point every 3 to 10 nmi (in both the north-south
and east-west directions) can be accepted as an upper limit of data-
point density required in cyclone analysis, the lower limit should
probably not be less than one data point per 50 to 60 nmi square. The
minimum scale features that can be analyzed from a data coverage of
one point per 50 to 60 nmi square are compatible with the scale of the
convergence zones and frontal zones of a cyclone system. These zounes

constitute an essential part of the tropospheric models that are used
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NORTH-SOUTH DIMENSION-n mi

to describe the weather and that are currently being analyzed with the
standard meteorological observations (e.g., frontal cyclone model).
The required data density on jet streams can be evaluated from data on

typical spacing of cirrus bands (Conover, 1960) (see Fig. IV-1).
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FIG. IV-1 ESTIMATE OF DIMENSIONS OF SPACING
BETWEEN JET-STREAM CIRRUS BANDS

The optimum method will be dependent not only upon the purpose for

which the data will be used and upon an agreement as to what is ''signif-
icant" in cirriform cloudiness, but on engineering factors as well.
However, from the standpoint of meteorology, it seems likely that the
operational meteorologist will use the height data to construct charts
of isopleths of cirrus altitude and thickness to be used in conjunction
with the concurrent satellite photograph. He naturally will want, if
possible, to know something about all the cirrus he can see in the
photograph, and hopefully something about subvisible cirrus. Later,

as information and knowledge accumulates, he may be in a better position

to utilize fine altitude resolution from a smaller number of samples.

If initial power restrictions do not permit wide-area scanning,
the research meteorologist will certainly welcome lidar data taken

simply as a series of soundings made along the satellite subtrack. A
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downward-pointing lidar capable of firing approximately once per second
could generate a cloud altitude and thickness profile based on sample
points taken every 3 to 3.5 nmi. This density of data acquisition is
greater than that ordinarily achieved in atmospheric sampling and, if
used in conjunction with a concurrent television or HRIR picture, could
be of great value in evaluating the potential of the lidar and in

planning future programs,

The minimum data density which would appear to be worth considering
seriously for incorporation into an unmanned satellite even for research
purposes would result from a vertical sounding about every 50 to 60 nmi
along the orbital track; i.e., approximately one every 18 seconds. If
the lifetime of the laser becomes an important consideration, it would
be satisfactory to operate such a simple system by command from the

ground only during times when interesting cloud situations prevail.
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V EQUIPMENT DESIGN FACTORS

A. General

Quantitative values for the various possible tradeoffs in the
design of a lidar for space application evolve from study of the lidar

equation developed in Sec. V-B.

However it is instructive at this point to list the major con-
tributing factors, the qualitative relationships between them, and
the practical boundaries which have been used in compiling thé pre-~
dictions of system performance used in this report. Should a technical
breakthrough suddenly reduce the limitation on any one parameter, it
is hoped that this section may be useful as a checklist and starting
point in evaluating how much total system improvement can be realized

before some other limitation takes over.

For the case of a short-pulse ruby lidar, the major specifications
can be grouped conveniently into four associated with the transmitter
and five for the receiver.

(1) Transmitter pulse energy should be generally as large as
possible, limited by

(a) Laser capability
(b) Available primary power
(c) Reliability

(d) Possible eye damage, if beam size is small (See
Sec. V-F).

These are interrelated with consideration of
(a) Pulse repetition rate

(b) Pulse length.

The value used for design estimates is

Pt = 1 joule per pulse.
(2) Transmitter pulse length should be short compared to the
two-way tiansit time in the minimum radial dimengion of

interest in the phenomenon being probed.
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For classification of clouds into 500-foot layers, this
would specify a maximum pulse length of approximately one
microsecond. For probing such volume targets, shorter
pulses offer no advantage nor suffer any penalty. It is
the total pulse energy which is important. The currently
preferred method of obtaining short high-energy pulses

is by means of Q-switching the resonant cavity. The
pulses which emerge naturally from this mode of operation
are very much shorter than one microsecond--typically
less than thirty nanoseconds. The value used for design
estimates is t = 25 nanoseconds.,

Transmitter beam size and shape. The minimum beam cross-
sectional area near the earth will be limited by:

(a) Values obtainable with practical ruby rods and
collimating optics

(b) Difficulty of tracking with the receiver field
of view

(c) Possibility of eye damage to observers on earth

(d) Possibility of missing important information and
wasting valuable pulse energy by firing through
very small clear areas of no meteorological
significance.

The maximum beam cross-sectional area near the earth will
be limited by the maximum size of cloud features over
which the meteorologist is willing to integrate in deter-
mining the value to be assigned to a single sampling
point. The transmitter beam size should not be larger
than that of the receiver (to prevent energy waste).

Ultimately, there may prove to be some advantage to using
specially shaped beams tailored to specific cloud types
(e.g., a long thin rectangle for probing cirrus filaments).
For the present, no clear need for special shapes is
apparent, and simple circular or square cross sections
will be assumed. The beam angle used for design estimates
is et = 0.1 to 10 milliradians,

Pulse repetition frequency. The PRF should be as great as
possible, limited by

(a) Available primary power
(b) Laser cooling capacity

(c) Range ambiguities. A slight complication occurs
when the rate exceeds approximately 170 pps,
where 1/PRF equals the round trip transit
time, but no serious ambiguities occur until
1/PRF becomes less than the round-trip transit
time between the top of the sensible atmosphere
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(5)

(6)

(100,000 ft ) and the ground. This considera-
tion would limit useful PRF's to less than
approximately 20,000 pps.

There is no advantage (in fact there may be
some loss) in substituting a series of N
smaller pulses, each of energy E/N, for a
single large pulse of energy E. (If all
pulses occur in a burst shorter than the re-
ceiver integration time there will be no loss.)

The minimum rate will be determined by minimum
number of sampling points required for full
earth coverage. This is independent of satel-
lite altitude. (See Sec. V-D.) The maximum
rate used for preliminary system evaluation is
PRF max = 2 pps (required to provide continuous
coverage at 1 data point per degree of latitude
and longitude).

Rezeiver beam size and shape. For maximum beam energy
utilization, the receiving beam cross section should be
no smaller than the transmitting beam cross section.
The minimum size will be determined by

(a) Minimum size attainable in the transmitter
beam

(b) Difficulty of tracking with the transmitter
beam.

The maximum size will be limited by the background light
power intercepted in relation to the signal power re-
turned within the same beamwidth (see Sec. V-B-2 for
quantitative discussion).

The choice of beam shape will be determined by the same
considerations as for the transmitter beam shape (see
above). Certain beam shapes may be preferred in order
to facilitate servo tracking of the receiver with the
transmitter using fast spot wobbling techniques.

Receiver aperture size. This should be as large as
possible, limited only by mechanical considerations of
size, weight, rigidity, and optical efficiency. Since
a larger receiver aperture always results in an im-
proved detection probability, even for daylight opera-
tion, receiver aperture area may be exchanged for
transmitter pulse power.

The maximum value to be used in preliminary design
estimates is A, (max) = 1.0 square meter. Note that
anpreciashle reduction in geometric resolution as
compared to that usually specified for large optics
may be possible and still permit compatibility with the
receiver beamwidth requirements discussed above.
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(7) Receiver predetection bandwidth. This should be as narrow
as possible, limited by

(a) The point where further bandwidth reduction in
practical filters is offset by increased trans-
mission loss

(b) Frequency variation of the laser, principally due
to temperature effects

(c) Variation of the transmission peak wavelength with
direction of the light being filtered. (For cur-
rently available interference filters, the shift
near normal incidence is approximately 1 /degree.)
This restriction in permissible divergence of the
light bundle at the filter implies that the
desirable wide-aperture receiving system has a
long effective focal length and this in turn
restricts the ability to scan over large nadir
angles

The minimum value used for preliminary design
calculations is AA(min) = 3 & to 50 percent
response points,

(8) Receiver integration period (range resolution interval).
This should be as large as possible,limited by the
minimum range resolution desired. The value used for
preliminary design estimates is At = 2 microseconds,
(corresponding to an altitude cell size of 1000 ft
for vertical sounding).

(9) Receiver signal amplitude range and amplitude resolu-
tion. The range should be large enough to accommodate
the full gamut of possible signal return levels from
snow-covered earth to Rayleigh molecular scattering
at approximately 10 km elevation. Amplitude resolution
should be adequate to record significant variations in
cloud densities.

The values used for preliminary design estimates are

(a) Amplitude range = 60 dB (of received radiation
power)

(b) Amplitude resolution = 1-3 dB.

See Secs. V-B and V-E for further discussion.

B. Power Levels Required for Detection

1. General; the Lidar Equation

As is the case for most radar and communication problems, the

specification of the required power for a lidar transmitter involves
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consideration of the strength of the desired signal return as compared
to the strength of competing background radiation and to fluctuations
in the receiver output due to internal system noise. Rather than
attempting to work with one all-inclusive system equation, it appears
preferable for this discussion to consider first the response of an
ideal noise-free receiver to the desired signal alone. We next con-
sider separately the internal noise level and the response of the

receiver to various types of background radiation.

In Section V-B-4 we combine two sets of data and use statistical

concepts to evaluate the probability of detection of the desired signal.

Figure V-1 shows the geometry of a pulsed lidar system located in
space and viewing a distributed target such as a cloud. It is assumed
here that the target fills the transmitter beam and is thicker than the
pulse length ct and that the receiver field of view is at least as

large as the transmitter beamwidth.

The "lidar equation” describing the performance of the system

defined above in the absence of noise or competing background is:

P = PtArﬁal’soTo - T_exp (-20R’) , (v-1)
where
P = received power (watts)
P, = transmitted power (watts)
AL = effective area of receiving aperture (mz)
¢ = velocity of light (meters/second)
T = transmitter pulse length (seconds)
R = one-way distance between lidar and target (meters)
6180 = volume backscattering coefficient (m_l) (defined
more fully below)
To = <transmission efficlency of all optical componenis

in tandem (dimensionless)
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T = atmosphere transmission factor accounting for total
two-way path attenuation in the region R-R‘ between
the lidar and the region being probed (dimensionless)

g = Oa + O = attenuation coefficient within target
region (m™%)

-1

o, = attenuation coefficient due to absorption (m )

-1

o, = attenuation coefficient due to scattering (m™ ™)
R = penetration distance into the target region (meters)

A few points about Eq. (V-1) are worthy of additional comment. For
volume targets, the effective scattering volume (sometimes called the
"coutributing region') for backscattering is half of the total illuminated
volume since because of the two-way travel time the power entering the
receiver at any one instant could only have originated from half the

length of the illuminated volume.

The volume backscattering coefficient 8180 is the value of the

volume scattering function for the backscatter angle of 180°.

At least two different definitions are in fairly common use for

the factor B

/
180’
values which differ by an annoying factor of 4m. This is unfortunate
s
180
derived atmospheric data between installations or between equipment

resulting in occasional confusion because of numerical

since B is a most convenient parameter to use in exchanging lidar-

engineers and meteorologists. The reader is cautioned to search for
7

180
different sources are to be compared.

the precise definition used for B whenever numerical results from

The following convention is used in this report: The product of
5180 and the effective scattering volume (the contributing region) is
a '"'radar backscattering cross section, B, defined in conventional micro-
wave radar terminology*—-i.e., as if the intercepted power were scattered

isotropically. If, as is sometimes done, the volume backscattering

B =4 power reflected toward the source/unit solid angle
'incident power density
Van de Hulst, 1957).

(Skolnik, 1962;
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coefficient is defined on a per-steradian basis and given the dimensions
-1 R § .
of meters - steradian ', the numerical values for this coefficient will

be 1/4m times those used herein.

When the assumption made in Fig. V-1 of a uniform cloud density is
not valid--i.e., when ¢ is not constant for all of R’--the exponential

term in Eq. (V-1) must be determined by integration.

The attenuation factor for non-uniform target is exp(—2IGde).

Since the total energy per pulse Ut is
U, = P.r joules (v-2)

U, can be substituted for P T in Eq. (V-1), whereupon it becomes

t
apparent that for volume targets and for situations where the allowable
range resolution is greater than that limited by the transmitter pulse
length, the received signal strength Pr is proportional to the total

integrated pulse energy, rather than to the peak transmitted power.

Often it is convenient to work with received powers in units of
photons per unit time rather than power. This conversion is easily

made by employing the identity,
1 photon = MN/hc joule (v-3)

-34
for the wavelength being used. h is Planck's constant, 6.625 X 10 joule-
second. By substituting both Egs. (V-2) and (V-3) into Eq. (V-1), an
alternate expression for the lidar equation results.
/
U
tArB kToT

P’ = ——————;r——g»exp(—ch') photons/second |, (v-4)
8R h

where the prime notation indicates that Prl is expressed in photons per

unit time,

In the following sections, the lidar equation will be applied to
various cloud models to determine the signal levels to be expected in

practical situations,
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2. Atmospheric Models and Predicted Waveforms

In this section we postulate several representative cloud situations
and apply the lidar equation to derive the corresponding signal waveforms
that would be expected from probing this atmosphere with a pulsed ruby
lidar located in a 1000 km satellite.

From the point of view of a simple optical radar operating on non-
resonant backscattering at some specified wavelength, the actual physical
situation existing in the atmosphere can be adequately modeled by two

functions, (h) the volume backscattering coefficient as a function

A B]’.80
of elevation, and o(h) the extinction coefficient as a function of
elevation. While such a model is uniquely specified by a particular
physical distribution of particle sizes, shapes, composition, and number
densities, it does not of course follow that the inverse is true.

(h) and/or o(h) is about

4

180
as far as a single-frequency lidar alone can go toward describing the

However, the construction of profiles of B

physical situation. This provides a much more precise description than
is available from television, photography, or visual observation, and
is perhaps the best information interface between the lidar and the
meteorologist or cloud physicist.

The specification of either one of the two functions provides a

/
180
That is, for a given scattering volume,

fairly good description since B and O are usually closely related.

{80 ~ ko . (v-5)

When the scatteiing particles are small compared to the wavelength
of the illumination (Rayleigh scattering), k = 1.5. The ratio is not
constant for larger and non-spherical particles which require the rela-
tively complex calculations of Mie scattering theory, but it seldom

differs from unity by more than a factor or two (see Sec. VI).

Thus in the following discussion and throughout most of this report
the volume backscattering coefficient B{SO will be iLhe priucipal patram-

eter used to describe the targets being probed.
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Figures V-2 through V-5 present four different models, together
with the associated lidar returns. The top curve (a) in each figure

presents on semilogarithmic coordinates the assumed distribution of

7

180
again on semilogarithmic coordinates, show the expected lidar return

as a function of elevation (or time). The middle curves (b),

level at a 1000 km satellite, and the bottom curves (c) present this
same information on linear coordinates. The linear coordinate waveforms
have been included principally to show the appearance of the return

when viewed on a conventional A-scan oscilloscope display, which because
of its simplicity is the presentation that has been used for most of

the data published to date., It is evident that with the linear A-scan
display valuable information would often be lost by compression at the
top and lack of resolution at the bottom, and also that it is more diffi-
cult to make the mental transition between the signal waveform and the
actual distribution of cloud in space. Note that in the semilogarithmic
presentation a uniform cloud distribution results in a signal return
with a linear negative slope which is directly proportional to the

attenuation coefficient ¢ within the cloud.

The units used on the ordinates of the signal-return waveforms
are photons/mz—microsecond and give the signal power deusity which
should exist at the receiving aperture. By multiplying these numbers
by the effective receiving aperture area and by the quantum efficiency
of the photodetector, the signal output in counts per microsecond is
obtained for any specific receiving system. Alternatively, for the
higher signal levels where the photoelectron rate is too high to permit
digital counting of individual pulses, the waveforms can be thought of

as representing the output current at the anode of the photomultiplier.

In Fig. V-1 we have assumed a uniform medium-density cirrus-cloud
layer between 26,000 and 31,000 feet (7.9 to 9.5 km), a uniform medium-
density stratus layer between 8,000 and 10,000 feet (2.3 to 3.1 km),
level grassland at the earth's surface and a Clear Standard Atmosphere

at all other elevations.
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180
of Sec. VI. For the clear atmosphere, values were taken from Elterman's

Values of B for the clouds correspond to those in Fig. VI-2

model of a Clear Standard Atmosphere (Elterman, 1964).

The first lidar return of significance is received at the satellite
(after a total round-trip delay of about 6 milliseconds) from the top
few hundred feet of the cirrus layer. For this point the atmospheric
transmission term in the lidar equation [Eq. (V-4)] will be essentially
unity, so that the power density returned to the satellite will be
the transmitted energy, by B._ . the

t’ 180
volume backscattering coefficient of the cloud, by V, the relative

determined principally by U

amount of cloud cover intercepted by the beam, and by R, the distance

from satellite to cloud.

Since only order of magnitude estimates are required at this point,
the calculations will be kept simple by assuming a constant range of

1000 km for all targets, a one-joule transmitted pulse, and V = 1.0,

With these assumptions, Eq. (V-4) reduces to

PI
R _ (Y photons .
il 4.18 x 10 BlSOTaexp( 20R)m2 - (v-6)

Thus the power density expected back from the top of the cirrus
cloud (with B’ = 10'3m'1) is 4.18 x 10° photons/m2 - psl, which is
plotted in Fig. V-1(b). Returns from the lower portions of the cirrus
layer and from any targets below the cirrus top will be attenuated by
scattering of photons out of the beam on both the incident and return

paths.

Waveforms (b) and (c) were derived by solving Eq. (V-6) using as
the atmospheric transmission factor Ta for each point an integrated
value obtained by summing scattering losses due to any layers above

that point:

R R, R,
™ = oxp -23 rlg dr + rz()'__dr + r30'.,d1‘ ¢« o o e (V—7)
a JR 1 JR ¥4 R 9

1 2 3
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To those accustomed to thinking of transmission engineering problems

in terms of "decibels loss per unit distance' it is convenient to recast

the signal decay within the cloud as follows:*

e-zoR’ -20R ‘(log e) -20R(0.434)

= 10 10

way transmission) = -8.68c ds . (v-8)

i d
S TEETE (for two- unit distance

unit distance

The following equivalent relations are listed for reference (o0 is in

units of m_l).

signal decay

T distanos (two-way) = -8.680 dB/meter
= =8.,68 X 1030 dB/km
= <2,64 X 1030 dB/1000 £t
and since
ct 3 x 10%t’
R = =& - X2 ° _ 150t

I ry . kY . Iy
where t is echo delay in microseconds and R is one-way range in meters,

signal decay
unit time

(two-way) = -1.3 X 1030 dB/ s

These relations also can be expressed in terms of 5180 if, for the
various cloud regions one assumes appropriate values of the ratio

{
k= Brgo
A through E the following values of k were used:

/0. 1In sketching the predicted signal waveforms of Figures

* While the meteorologist or pure physicist may resist the application
of basically telephonic terminology to problems of cloud physics, the
occasional use of the term "dB" defined as

P

1
power ratio (in dB) = 10 log,, =
10 P2
is felt to be justified because it fills a gap in nomenclature for

exponentially decaying phenomena and because much of the instrumen-
tation required for a lidar is calibrated in dB.

38




Scattering Source k

Rayleigh 1.5
Water Cloud (r > 3u) .625
Cirrus Cloud (r ~ 120) 0.625

As discussed more fully in Sec. VII, there is at present consider-
able uncertainty attached to the value of k for cirrus cloud, A value
closer to unity is now felt to be more correct, but since the illustra-
tions in this section were drawn early in the project and there are
numerous references to them in other sections, the earlier estimate has

been retained here,

Signal returns from the lower cloud and aerosol concentrations
were estimated by successively applying Eq. (V-6), using in each case a
value for Ta determined by the cumulative losses introduced by all

attenuating layers above the altitude being probed.

For example, for the stratus return of Fig. V-2, Eq. (V-6) gives

a figure of

P
KE = (4.18 x 107)(10‘2)(7.5 X 10‘3) = 3.14 x 103 pgotons
m —p,s

for the top portion of the layer, including the effect of attenuation

by the higher cirrus layer. The attenuation rate within the stratus
layer will be 42.4 dB/1000 ft for a total loss of 84.8 dB (T = 3.33 x 10
for 2000 ft stratus).

9

Similarly, the return from the earth's surface is found by applying
Eq. (V-G) and using as the attenuation factor the total loss through
the two cloud layers plus 2.2 dB as an integrated value for the remainder

of the atmosphere,.

P
R _ -
— = (4.18 x 107)(10 1)(1.51 x 10 11)
R
_ -5 photons
= 6.33 x 107 B2 . (v-9)
m —p,S
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Thus, for this cloud situation, the earth return from a one-joule pulse

would be well below the quantum detection threshold.

The waveforms for the other assumed cloud situations have been

synthesized using a similar procedure.

The signal-return levels read from the ordinates of the (b) portions
of these figures can be compared directly with the background light
levels tabulated in the following section (V-B-3). They will also
provide input data for the detection-probability calculations of

Sec. V-B-4.

3. Background Light Levels

The system performance limitations imposed by the extraneous light
energy collected along with the desired signals can be investigated by
first examining the background power densities which would be expected
at the satellite. These data may then be compared with the power density
expected at the satellite for various transmitter-target combinations
(Sec. I1I-B-2), using the S/N ratio and detection-probability relations

developed in Sec. III-B-4 as criteria for assessing performance.

Except for an inconsequential amount of light generated near the
earth's surface by lightning, fires, volcanoes, and man-made sources
and except for minor contributions from meteors, the aurora--and the
nightglow--all of the stray light entering a carefully designed receiver
must necessarily be of astronomical origin and reflected from the earth

and/or its atmosphere.
The power density PS existing at the satellite due to light
reflected from the earth will be:

B_A A

2
P = _E beam watts/m (v-10)
] 2
R
where Abeam is the cross-sectional area of the receiver beam pattern
near the earth, A\ is the effective bandwidth of the optical predetection

filter, R is the satellite-~to-earth distance, and BE’ the earth's
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radiance, is a function of the ambient irradiance IE falling on the

earth and of the nature of the reflecting surface.

Within the accuracy required for this evaluation, the earth and
its surrounding cloud cover can be considered as a Lambertian reflector

having an effective reflection coefficient r.

Thus
Ir o
B, = .%%- watts -m--steradian T-A"" (v-11)
‘ . 2 2]
where IE is measured in watts -m -A .,
In the general case, IE’ BE’ and r are functions of waveiength.

In this report operation with ruby lasers at the fundamental wavelength
of 6943 A has been assumed (except where otherwise noted). Investigation
of noise levels at other visible and near-visible wavelengths can be
accomplished by multiplying the results for ruby by appropriate wave-

length-dependent scale factors. (See Sec. IX.)

Table V-1 lists representative numerical values for IE’ and Table

V-2 gives typical values for r,

Table V-1

AMBIENT LIGHT LEVELS AT THE PLANET EARTH
(Duntley, 1948)

L1llumination |Incident Power Density I in Region of )\ = 0.7,

- 0— - —' 0—
(ft-candles) | (watts - m 2a 1) (photons - s b _ow?_a 1)
Full
Sunlight 10? 107t 3.5 x 1017
Full
Moonlight] 1072 1077 3.5 x 1011
Starlight 1074 1072 3.5 x 10°
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Table V-2

EFFECTIVE DIFFUSE REFLECTION COEFFICIENTS
(Gordon, 1964)

Surface r(@ \ ~0.7u)
Snow, dense clouds,
salt beds, white sand 0.30 - 1.0
Soil 0.06 - 0.3
Vegetation 0.03 - 0.1
Ocean 0.02
Values of 1

B’ r, and BE have been measured and reported by many
investigators., Since measured values will vary appreciably in both
space and time, and since general descriptors such as "twilight,"
"starlight," ''vegetation,' etc. are necessarily inexact, numerical
precision beyond two places is seldom justifiable. The important thing
is to note the tremendous range of perfectly feasible values which can

be encountered (over eleven orders of magnitude for BE) and to be sure

that the decimal point is correctly placed.

Figure V-6, which is a plot of Eq. (V-11), is included as an aid
to visualizing this large dynamic range while considering system design

tradeoffs affected by the background light level.

The three scales along the right hand margin of Fig. V-6 interpret

the values of BE in terms of background power density at the satellite

for the particular case of vertical viewing at 1000 km range, A\ = SR,
and for three different values of effective receiver field of view
(expressed in terms of beam cross-sectional area at the earth.) These
values represent solutions of Eq. (V-12):

A
’ beam A -6
- - . . — V—lz
P By LA " = x 10 , ( )

where P/SE is the power density existing at the satellite due to back-

ground radiation within the field of view of the receiver. The primed
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notation indicates that PéE is expressed in photons —m-z - us-l to
make it directly comparable with PéL’ the power density existing at the

satellite due to laser echoes.

This presentation clearly points out the folly of becoming overly
concerned about precise values of reflection coefficients for earth
features when making first design estimates of the amount of background
light to be expected. The total gamut from snow to very black surfaces
is seen to be quite small by comparison to the changes due to time of
day. For example, black asphalt at noon is very much brighter than
snow.in late twilight. Specular reflections from water surfaces and
(less frequently) from the tops of ice clouds will occasionally raise
the background level above the values shown in Fig. V-6. However,
interference from this source will be rare. Even when encountered, it
would not be expected to persist for more than one or two soundings.

4, Probability of Detection as a Function of Signal and Background
Levels

For a given background noise level in a particular range interval,
the reliability with which a desired signal can be detected and identified
will decrease as the signal level decreases. Alternatively, when one is
willing to specify a minimum acceptable detection reliability for the
system, one can say that there exists a lower limit to the received
signal which may be detected. This section discusses the determination
of this minimum signal level in terms of the average background noise
level, a specific probability of detection, and a specific probability
of false alarm™ for the case of single-look detection (enhancement of
the signal detectability by means of integration over several successive

pulses is not considered).

* probability of Detection = P(d) = the probability that a signal will
be correctly identified as a signal; Probability of False Alarm
= P(f) = the probability that background noise will be mistakenly
identified as signal.
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In the case of non-time-varying background illumination, the lidar
receiver background photoelectron count per range cell will vary with
time according to a Poisson probability distribution about an average

value n,

The probability of n photoelectrons arriving during a particular

range cell is

p(a) = |&LeT (v-13)

where n is the average number of photoelectrons per range cell.

Assume that the receiver has a counting threshold T such that the
arrival of T or more photoelectrons will be interpreted as a return
signal. The desired condition is that the signal threshold T be set
sufficiently above n to assure that statistical fluctuations in the
background noise will not often be interpreted as signal. This concept
is illustrated graphically in Fig. V-7, The probability that the
background noise fluctuation will exceed the threshold T (i.e., the
false-alarm probability) is defined as
(E£)ne_nb

n.

P(t) = ¥
u=T

(v-14)

In the presence of a given average background of H# counts per
resolution cell, the threshold T must be chosen to achieve a low value

of P(f).

During the reception of a return signal in a particular range
cell (i.e., range time interval) the expected or average number of
photoelectrons generated in that interval will be the sum of the
expected number of electrons due to the signal, H;, and the background

noise nb discussed previously:

Y ™y = + . -
ng +o n . +n (v-15)
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P(nb) Probability of
registering o count due
to background alone.

P ny ns)
Probability of registering
a count due to signal and

/ background

P(d) Area under nyt ng

curve and to the right
of n=T

P(n)

n ———e |
Threshold level
P (fa

Area under "b  curve and to the
right of n=T

FIG. V-7 DETECTION AND FALSE-ALARM PROBABILITIES

The probability of observing exactly (nS + nb) photoelectrons in

a particular range cell is given by:

‘ns+nb)
n + n e
P(ns + nb) = . (v-16)

-(ns+nb)

Simarly, the probability that nS + nb photoelectrons will exceed an

arbitrary threshold T (i.e., the probability of detection) is given by

(ns+nb) -(E;IE;
p(d) = 2 s b (V=-17)

(ns+nb)ﬁT (nS +n )!

Since the threshold T to be used in Eq. (V-17) has been determined

by the average background noise Es and a specified value of P(f) in

Eq. (V-14), the additional specification of a value for P(d) in Eq. (V-17)
will define a minimum value for (nS + nb). Since E£ is known, the
minimum value of Es is defined by Eq. (V-15).

To summarize, the average background noise level H£ and the desired
value of false-alarm probability serve to define the value of the
counting threshold T. This threshold and the desired value of detection
probability will uniquely define the minimum signal level which may be

reliably detected with the given values of n_, P(d) and P(f).

b’
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Figure V-8 gives a plot of either Eq. (V-14) or Eq. (V-17) as a function
of the counting threshold, T.

In Figs. V-9 and V-10, data derived from Eqs. (V-14) and (V-17)
are presented in a form which makes it easier to see the dependence
of the detection probability on the absolute values of E; and Eb'
It becomes readily apparent that if one moves up a 45° line of
constant E;/E#—-corresponding, for example, to increasing either the
receiving antenna aperture or the integration time--there always
results an increase in the detection probability for a given false-
alarm probability. It is also evident from the curves that signals can
be detected even in the presence of an equivalent amount of background
(ES/Eg = 1) with a reasonably high degree of confidence--i.e., with

P(d) > 99 percent and P(f) < 0.1 percent--so long as the average number

of signal events per integration interval, KS, is greater than about 50.

If one can provide enough transmitter power or a sensitive enough
receiver that the average number of signal events per integration
interval is on the order of 350, then one can have the same high degree
of confidence in the validity of the detection output with a E;/E; of
only O0.1.

Comparison of Figs .V-9 and V-10 and examination of the trend in
Fig. V-8 reveals that the signal level required for reliable detection
is not a very sensitive function of the false-alarm probability for

values of the latter below a few percent.

C. Choice of Reporting-Area and Sampling-Spot Sizes

1. General

The specification of an optimum spot size and sampling density
for a satellite-borne lidar is one of the most difficult tasks asso-
ciated with this evaluation. Partial witness to the truth of this
assertion is the long and continuing controversy over what is the best
compromise between resolution and coverage to be used for observing

clouds via satellite-borne television,
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First, it is important in the lidar case to differentiate clearly
between the size of the probing beam and the spacing between soundings
taken with that beam. Because of the limited number of soundings pos-
sible with an active system, the "reporting area'" associated with each
sounding will normally be much larger than the area of the actual
probing spot. Thus terms such as "definition" or "resolution", unless

very carefully defined, tend to be ambiguous and will be avoided here.

2. Reporting Area

The data on extent of cirrus coverage given in Sec. II, the intuition
of observers who have worked with thousands of TIROS and NIMBUS pictures,
and the experience of numerical weather prediction personnel all point to
a desirable maximum reporting-area size of about 100 km on each side.

(A rectangular reporting grid is assumed.) This corresponds to approx-

imately 1° of latitude and longitude near the equator.

To obtain this density of data reports requires a lidar sounding
rate of 1.86 shots per second, essentially independent of the altitude
of the satellite (see Sec. V-D). Fortunately this rate appears to be
within reason with respect to current technology in high-power pulsed
lasers, at least for ground-based operation. Also, even at 0.1 percent
efficiency (a reasonable value for Q-switched ruby lasers) the required
primary power for one joule per pulse output would be 1.8 kilowatts
which, while high, could be obtained in a satellite if necessary. The
chances for significant improvements in laser efficiencies over the
next few years, and for the attendant reduction in cooling problems,
appear great enough that 1.86 pulses per second will be considered a

potentially feasible sounding rate.
3. Spot Size

Technical limitations will place a lower bound on the size of
the sampling spot near the earth's surface at about 0.1 km. This
figure implies a transmitter beamspread of 0.1 milliradian which is
considerably better than that which emerges directly from even a very
good ruby rod, but which can be achieved through the use of auxilliary

collimating optics. The practical problem of maintaining alignment

53




between the transmitting and receiving beams in spite of structural
variations caused by time and temperature has been reported by almost
every group attempting to work with large-aperture systems having
beamwidths much less than one milliradian., Some form of automatic
servo tracking of the receiver with the transmitter almost certainly

will be needed if the 0.1 km spot size is required.

The technical limitations on the largest usable spot size are
determined principally by the permissible background light pickup,

and one argument for specifying it runs as follows:

’ (1) Assume that the lowest signal return that will be of
interest is that corresponding to Rayleigh molecular
scattering from an elevation of 10 km (very weak cirrus
layers will yield returns only slightly larger than
this; see Sec. IV).

(2) For an assumed 1l-joule transmitter pulse, either
Eq.(V-6) or Fig. V-4(b) gives a value for the expected
signal return at the satellite of 80 photons/m2 - s,
or 160 photons/m2 for the 2-microsecond integration
period (corresponding to a desirable range resolution cell
of 1000 feet).

(3) Wwith a 1 m? receiving aperture and a photodetector
quantum efficiency of 5 percent (barely attainable
today), the expected signal return from this target
would be 8 pulse counts per integration interval.

(4) Then, using the chart of Fig. V-9, it is found that
for a 90-percent detection probability and a l-percent
false-alarm probability, the allowable noise counts
from the photodetector should not exceed one count
per integration interval. Using the same figures
for quantum efficiency and receiver aperture, this
corresponds to an allowable background power density
level at the satellite of 10 photons/m? - ps.

(5) Finally (referring to the background-level chart of
Fig. V-6) it is seen that with the assumed 3A band-
width optical filter, the permissible 10 photons/m2
- us level is just over that which would be generated
by snow in full moonlight if the area of the probing

spot were 100 km2,

Considering the approximations involved (including the assumption
of 100-percent optical and system efficiency) it appears that the

largest symmetrical receiver beam which should be considered from a
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noise standpoint, even at night, is that which would view an area near
the earth approximately 10 km across; this corresponds to a receiving

beamwidth of about 10 milliradians.

In Sec. V-D it is shown that an appreciable loss of altitude
resolution would result near the edge of a wide scanning swath for
beams less than approximately one milliradian wide in the plane of the
scan., This suggests the possibility of using a line-shaped scanning
aperture having dimensions of approximately 100 km parallel to the
orbital track and 1 km perpendicular to the orbital track. However,
such a highly elongated scanning aperture would be biased in favor of
long filamentary clouds oriented principally in the north~sou£h direc-

tion; this approach is therefore felt to be undesirable.

From a meteorological standpoint, the size and shape of the
sampling spot must be chosen so that the average or integrated return
from the relatively small sample will be most representative of phe-
nomena of interest over the entire reporting area. If the sample size
is too small, there is a higher probability of the beam going through
holes and giving little or no return from a relatively cloudy situation.
If it is too large, strong returns from cloud cells of significant size
can be diluted by low or zero return from the surroundings. The state-
ments made in Sec., IV about the desirability of detecting cirrus features
on the mesoscale of the thunderstorm cell (3 to 10 nmi or 5.5 to 19 km),
together with the data on jet-stream cirrus bands in Fig. IV-1, suggest

that the sampling-spot size should be on the order of 1 to 10 km across.

Weighing all of the above considerations, we are led to a recom-
mendation, at least for preliminary system design, of a symmetrical

sampling spot 1 to 3 km in diameter.

D. Orbital Considerations

Since it is expected that the lidar would normally be used in close
conjunction with other remote sensing devices contained in the same
orbiting vehicle it would seem presumptuous to assume that the orbital

parameters would be optimized especially for the lidar. Fortunately
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most of the design criteria pertaining to orbit selection for television

and high-resolution infrared systems are also valid for the lidar.

The ideal orbit for routine meteorological observation appears to
be circular, near-polar, and retrograde (sun-synchronous). When pro-
vided, in addition, with an earth-oriented platform a satellite in
such an orbit provides global coverage with a high degree of day-to-day

uniformity in viewing geometry and lighting conditioms.

The principal remaining orbital parameters to be specified while
still remaining within this general framework are the height and the

local time of the ascending node.

These two factors will now be examined from the point of view of

satellite-borne lidar operations.

1. Orbital Height

If one assumes that the east-west field of view of a polar-
orbiting observational satellite will be designed so that on consecu-
tive orbits the mapped swaths will be contiguous at the equator, then

it turns out that the amount of earth area passing through the field

of view of the orbiting sensor per unit time is very nearly independent

of satellite height. This is because the width of the swath required

for contiguous coverage is directly proportional to the orbital period,
while the distance covered in the orthogonal or north-south direction

is inversely proportional to the orbital period.

Neglecting the oblateness of the earth, the small error caused
by precession of the line of nodes, and the small difference between
sidereal and solar time, the total possible east-west coverage of all
of the swaths of a polar-orbiting satellite will be one earth circum-
ference every 12 hours. On each orbit, one earth circumference of
north south-distance will be traversed by the sub-satellite point, and
the surface area A capable of being mapped will be very nearly

2 PS

= (v-18)

A(l orbit) a (2mr)
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where
r is the earth radius

P, 1is the satellite orbital period (in hours)

This approximation differs from the true area coverage only by the
ratio of the lengths of the arc and the chord at the equator for omne
orbital period, and the error is less than 10 percent for swath widths

less than 90°,

From Eq. (V-18) it follows that the required mapping rate will be

A/t = 1.86 x 10 kmZ/s

regardless of the height of the satellite. This figure, together with
the maximum allowable area per sampling point as determined by meteoro-
logical considerations, (see Secs. IV and V-C) can be used to find the

required lidar firing rate.

Figure V-1l shows the behavior of several pertinent system parameters

as functions of satellite height.

Aside from the consideration of generally lower launching cost for
lower orbits, the only argument in favor of a low altitude for a lidar
satellite appears to be the l/R2 factor in the lidar equation. Since
transmitter power will always be at a premium in an active system, the
orbit obviously should be no higher than is absolutely necessary to

fulfill the other system requirements,

On the other hand, too low an orbit leads to certain difficulties

outlined below.

a. Scanning Angle

The maximum east-west scanning angle (i.e., the maximum east-
west nadir angle) becomes inconveniently large for low satellite alti-
tudes as shown in curve (a) of Fig. V-1l1. As a point of reference,
"normal" camera lenses are corrected to cover fields of approximately
#20°, Anything wider than that is considered "wide angle", and is
usually achieved by sacrificing some other quality--speed, geometrical
accuracy, resolution, etc. The 17 mm, f 4,0 lens used for the vidicon

system in NIMBUS satellites has a full field of 49° and was selected
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only after thorough study of then available types.* Large scanning
angles not only complicate the design of the transmitting and receiv-
ing optics; they also call for non-linear corrections to be made in

the scanning angle and/or the transmitter firing rate if severe
geometric distortion and non-uniform sampling density are to be avoided

near the edges of the swath.

Fortunately the sampling rate arrived at from other consider-
atiqns is slow enough that it is possible to consider a mechanical scan
including, for example, cam-controlled corrections on focus, field of
view, aiming angle, and receiver gain. Mechanically scanned optics,
undesirable as they may seem, do have the ability to achieve more
resolution elements per scan line, particularly at wide aperture,
than is possible with the best television cameras or even film cameras

employing fixed lenses.

Thus a requirement for large scanning angles would not in

itself present an insurmountable obstacle,

b. Elevation Angle

The elevation angle for rays arriving at the earth's surface
near the edges of the swath becomes very low for satellite altitudes
below about 1000 km [see curve (b) of Fig.V-11]. This leads to
difficulty in height discrimination as illustrated by the scale

drawings of Figs. V-12 and V-13.

In Fig. V-12 the height of a 10 km cirrus layer is so small
in comparison with the earth radius that it scales as an imperceptible

broadening of the line representing the earth's surface.

Figure V-13 is an expanded view of conditions existing at
point B of Fig. V-12, near the extreme edge of the swath for a 1000 km

satellite.

The arriving beam from the satellite-borne lidar is depicted
as having a width (at least in the plane of the paper) of approximately

1 km., This is about the minimum value that can be expected from both

* Stampfl, 1961. :
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FIG. V-13 BEAM GEOMETRY AT EDGE OF SWATH

meteorological and equipment considerations as discussed in Secs. IV
and V-C. The energy pulse from a Q-switched laser, being less than

10 meters long, then resembles a very flat pancake, represented edge-on
by the single line in Fig. V-B. It is evident that at any instant the
return from this thin disc of emergy will be affected by cloud conditioms
existing over an altitude rénge of approximately three thousand feet

(1 km). Thus for this geometry it will not be possible to realize the
desirable condition of having range resolution in 1000-ft (300 meter)
increments. A companion effect is that cloud with good vertical
development but spotty horizontal coverage could more fully fill the
beam and therefore give a stronger return when located near the edge

of the swath than when viewed from directly above. Tihese and similar

problems were discussed in more detail in Sec. V-C on beam size, but it
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is evident here that quantitative results in both range and amplitude

will be subject to severe distortion at low incident elevation angles.

c. Signal Variation

The variation in signal strength between targets directly
under the lidar and equivalent targets near the edge of the swath
becomes very large at low satellite heights because of the l/R2 factor

2

in the lidar equation. Curve (c) of Fig. V-11 plots (Rmax/Rmin) as a
function of satellite altitude, and shows that for 1000 km height the
ratio is 3.5 to 1 and that the factor increases very rapidly for lower
orbits. Figure V-14 presents this information in a form somewhat more
useful for evaluating the tradeoff between signal variation and absolute
signal level, The top curve represents received echo power levels for
a given target at the subsatellite point and various satellite altitudes,
normalized with respect to the signal at 1000 km range. The bottom curve
gives the same data for an echo received via a similar target at the ex-
treme edge of an optimum-width swath and can be used to estimate the
minimun signal levels which will be encountered. Since the vertical
scale is on logarithmic coordinates, the vertical distance between the
two curves is a measure of the variation in received signal level during

a transverse scan of a uniform cloud layer near the earth.

d. Variation in Effective Spot Size

The variation in range from center to edge of the swath will
result in a variation in the effective spot size of both the transmitting
and receiving beams unless some dynamic correction is made. In addition
to complicating the specification of system resolution, an increase in
spot size is undesirable in that it tends to increase the amount of back-
ground light reflected into the receiver, assuming the receiver accept-
ance angle is correspondingly increased. To a first approximation the
background level might be expected to vary as the cross-sectional area in

a plane normal to the beam direction, that is, in the same way as

2
<Rmax/Rmin) , curve (c) of Fig, V-11. This of course assumes that the
near-earth radiance will be the same in the oblique direction as it is
toward the zenith, an assumption which can only be true in the average,

if at all. In any event it appears desirable to specify that the system
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incorporate some form of dynamic control of the beam divergence so that
the beam cross section at the point of earth intercept is relatively

invarient with deflection angle,

Study of all of the curves of Figs. V-11 and V-14 suggests that
an orbital altitude of 1000 km is the minimum which should be used for a
lidar satellite expected to give continuous area coverage, and that 1500
to 2000 km would be a much better choice if the required increase in
transmitter power can be achieved. Figure V-15 presents for reference

a plot of satellite orbital period as a function of height.
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E. Data Handling and Display

The raw output of the photodetector in the lidar receiver is not in

a suitable form either for direct telemetry back to earth or for meteoro-

logical analysis. It will be the objective of this section to examine

the data quantities and rates, to anticipate what data processing would be

desirable, and to suggest appropriate points in the system for discarding,

storing, or modifying the time base of the data.

The basic information received at the satellite can be expressed most

generally as photon-arrival rate as a function of time, with the useful

portion contained in an extremely short time period compared to the inter-

pulse period.

For example, the units used in Sec. III-B for plotting the

predicted reception of both useful signal and undesirable background noise

were photons per microsecond.

1.

Data Handling

Conceptually, the receiver output is merely an analog voltage or

current, linearly proportional to the photon-arrival rate, and varying

as a function of time. Thus the total number of data bits per pulse is

expressable by the product of the total number of time increments (range

intervals) times a binary representation of the number of possible ampli-

tude increments per range interval. The practical problems which arise

in attempting to provide a remote indication of the received signal are:

(1)

(2)

The total amplitude range which must be handled is relatively
large, so that some form of logarithmic compression is
required.

Detection techniques capable of measuring very low photon-
arrival rates currently are severely limited in dynamic
range; yet detection techniques having adequate dynamic
range currently are too slow or too noisy to be used to
measure relatively small photon counts per range interval,
Either a technological advance or a composite detection
scheme appears to be required.

It is desirable to provide time-base conversion so that the
very high peak data rates generated in real time are ‘
smoothed into a relatively modest average rate for storage
and telemetry.
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To obtain an estimate of the required data rate, we can refer to
the predicted waveforms developed in Sec. III-A while keeping in mind

quantitative values for the practical restrictions just listed.

2. Number of Range Increments

The minimum range resolution element has been assumed to be about
1000 feet (300 meters) as specified in Sec. III-A. For monitoring of
ordinary cloud cover, it appears reasonable to establish a maximum al-
titude of 100,000 feet (30 km) to be handled regularly. If nacreous or
noctilucent clouds are to be monitored, additional data-storage and

transmission capacity will be required.

3. Number of Amplitude Increments

Examination of the predicted waveforms developed in Sec. III-A
reveals that the power range over which the useful signal component may
be expected to vary during any one sounding is somewhere between 104 and
105 (40 to 50 dB), depending upon the definition of the word "useful."

It is also evident that if variations from pulse to pulse in transmitter
power output are small enough to be neglected and if conditions are such
that the additional received power due to extraneous background light is
never more than the maximum signal power--resulting in a maximum power
increase of 3 dB--then one can specify upper and lower boundaries on the
absolute power levels which would need to be handled by the receiver.
These boundaries must be at least 43 dB apart, and preferably 50 dB

or more.

In order to accommodate possible drift in transmitter power and/or
receiver sensitivity, the system could either be designed for another
10 dB of range on an absolute or dc basis, or alternatively it could be
designed to transmit a single code group at the beginning of each lidar
pulse which would establish a dc calibration level for all data received
as a result of that pulse. A power ratio of 2:1 (3 dB) per amplitude
increment is suggested as the maximum step size which should be considered.
This would permit one four-bit binary word per range interval to describe
the signal over a 48 dB dynamic range; accordingly a minimum data compli-

ment per pulse is then estimated to be
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MR

100 range increments

pulse X 4 bits/range interval

data per pulse =

400 bits/pulse

This minimum data compliment is found to be low enough that it would
appear wise to invest slightly more in the data-handling capability in
return for the assurance that the data link would never limit the system

performance.

Table V-3 lists the characteristics of three feasible data trans-
mission/storage schemes. The combination in the third column, involving
100 six-bit words per pulse, has easy compatibility with many computer
formats and will be assumed for most of the calculations in this report.
In practice, perhaps four of the 64 possible code combinations would be
reserved for synchronizing and control functions, leaving a nominal

60 dB gamut for the signal.

Table V-3
SUGGESTED DATA—STORAGE/TRANSMISSION CAPABILITY
Minimum Alternate Preferred

Range Increments/Pulse 100 100 100
Data Bits/Range Interval 4 5 6
Power Ratio amplitude 2.0 1.6 1.26

increment (3 dB) (2 dB) (1 dB)
Total Dynamic Range 48 dB 64 dB 64 dB
Total Data Bits/Pulse 400 500 600

It should be emphasized that the provision for 60 one-dB steps of ampli-
tude range represents a design goal, not a firm specification as far as
the lidar receiver is concerned. As stated previously, achievement of
even 40 dB range with 2 to 3 dB accuracy at the required speeds and signal
levels is considered to be a significant technical challenge, and perfor-

mance of this order should still result in a usable lidar system.
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The principal reason for desiring a good amplitude resolution and
absolute accuracy in the raw data is to permit the best possible trans-
formation into the desired output format of 6180 as a function of altitude.
As discussed more completely in Sec. V-F-2, this transformation is quite

sensitive to amplitude errors in the input data.

4, Data Processing in the Satellite

It is anticipated that the on-board data processing would be limited
to:
(1) Derivation of a signal proportional to the received photon
rate (analog and/or digital)

(2) Range integration of the received signal, including correction
for slant paths (analog or digital)

(3) Provision of logarithmic amplitude-response characteristic
(analog or digital)

(4) Time-base conversion (digital)
(5) Record identification (digital)

(6) Recording of average background level of each sounding
(digital)

(7) Data storage between polar readouts (digital)

(8) Transmission to earth (digital)

Figure V-16{(a) is a block diagram of the equipment required in the

satellite.

The lidar is assumed to scan across the swath at a uniform angular
rate under control of the system master clock. '"Flyback'" could be made
essentially instantaneous by the use, for example, of multiple-faceted
scanning mirrors. The exact firing time would be controlled by boxes A
and B to give soundings uniformly spaced in the east-west direction along
the earth's surface. The received signals are integrated over uniform
altitude increments and expressed in logarithmic form by boxes D and E.
Time periods corresponding to uniform altitude increments near the earth's
surface are supplied by box G which provides a slant-range correction for
each shot from data supplied by the nadir-angle sensor, box A. It is

. 2 .
possible that the design of the receiver would permit 1/R correction of
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signal amplitudes for the variation in slant range to be performed at the
same time without undue equipment complication. For this discussion,
however, it will be assumed that the l/R2 corrections will be handled

by the ground-based computer. The approximately 600 bits of data generated
by each lidar sounding are buffered by box F which has the capability of
accepting data at rates up to three bits per micro-second and outputting

at approximately 1200 bits per second under control of the transfer clcck,

box H.

Because of its required capacity, the bulk storage memory, box I,
will probably be either a magnetic tape or a disc. Unless additional
telemetry terminals are provided by the time this satellite would be
flying, the bulk memory would have to have a capability for storing data

from two orbits as is currently done for the Nimbus series.¥

Addition of time codes, synchronizing codes, and other record-

keeping functions would also be done in the bulk-storage unit.

Not shown on the block diagram but undoubtedly a part of a practical
system would be a facility for monitoring the background level received
during most of the interpulse period following each sounding and recording
this average count rate as one or two six-bit words near the end of each

600-bit record.

During the five to ten minutes that the satellite will be within
range of a near-polar telemetry terminal, all of the lidar data taken
during the previous orbit--or possibly during the two previous orbits--
would be read out of the bulk-storage memory and telemetered to earth by

transmitter J.

If the capability were two complete orbits' worth of data in five
minutes, the required serial bit rate for data transmission would be
28 kHz. In practice, the lidar data undoubtedly would be multiplexed
onto a wider-band, higher-speed data link carrying information from other

sensors as well.

*
Ref. Stampfl, 1961.
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5. Earth Terminal Processing

The lidar product at the telemetry receiving terminal could be a
magnetic tape containing approximately 7.6 X 106 bits per orbit [ see
Fig. V-16(b)]. Assuming 555 byte per inch packing density and six data
bits per byte, the data from each orbit would require 190 feet of tape;
a typical 3600 ft roll of tape would accommodate lidar data covering

about 33 hours of operation.

Depending upon the urgency and the available transmission facilities,
the data could then be mailed or transmitted via wire or radio to a central
computing facility. The computer would then be used as required to trans-
form the raw data into plots of backscatter coefficient 8180 as a function
of altitude (see section V-F-2) or into descriptions in terms of inferred

physical parameters such as particle size, number density, etc.
6. Display

The fact that each lidar sounding results in a complete vertical
profile rather than a single value complicates the problem of data dis-
play. Considering how little is known about how the lidar soundings would
be used, it appears unrealistic to attempt to describe an optimum display
at this time. However it is very important that we be able to describe
one or more suitable displays, in order to permit meteorologists to en-
vision what the lidar might do for them. Ultimately, of course, we look
forward to the time when routine forecasting will be done entirely by the
computer, and any output maps would be machine-prepared after proper
weighting of data from many input sources, possibly including a satellite-
borne lidar. In this idyllic extreme, the lidar input would have become
so diluted that its individual contribution could seldom, if ever, be

recognized by inspection'of the output display.

At the other extreme, a cloud physicist performing research on a
particular problem in cloud genesis might well be most satisfied with a
tabular printout of the raw signal-return levels as a function of time
with some set of specified limits on altitude and geographic location.
Between these two extremes lie a variety of much more difficult display

situations which must be designed to make lidar information available to
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a human analyst in predigested, on-call form, Like any good servant, the
data should be available when needed but unobtrusive when it is not. One

approach would be print in the margin of a relevision or HRIR print small
4

180
in the picture--in much the same way that vertical temperature profiles

graphs showing B as a function of altitude for critical points

taken by ground stations located in the picture field are sometimes keyed

into the TIROS television pictures (see Fig. A-8, for example).

A 12-digit all-numeric format which could be implemented by computer

is as follows:

CLOUD DENSITY ON CLOUD THICKNESS IN HE IGHT OF CLOUD TOPS
A SCALE OF 5 THOUSANDS OF FEET IN THOUSANDS OF FEET

5 VERY DENSE N\ ,////ri

4 DENSE 3 5 32 HIGH (ABOVE 20,000 FEET)

3 MODERATE 5 2 12 MEDIUM (10,000 TO 20,000 FEET)

2 THIN X X XX LOW (BELOW 10,000 FEET)

1 VERY THIN JL&ﬁ;///

X's INDICATE DATA
UNKNOWN BECAUSE OF
ABSORPTIVE LOSS IN
HIGHER LAYERS

Altitude and thickness are given in feet rather than meters to reduce the
number of digits required for description in useful increments and over

a useful total range.

In order to give the reader some impression of the data density in-
volved even in such a highly reduced format, Fig. V-17 shows a TIROS
photograph with an overlay gridded in 100 km squares to correspond to the
size of lidar reporting areas recommended in Sec. IV-B. Near the center
of each square is a number group following the format shown above and
representative of the reduced data which might have been obtained from a
lidar sounding at a location indicated by the black dot immediately to
the left of the number group. The photograph of Fig. V-17, taken over the
west coast of Africa, near Cape Blanc, was chosen as an example for several
reasons. It was made when the TIROS camera happened to be pointing straight
down, which makes it representative of photographs taken from a stabilized
platform such as that proposed for the lidar satellite. The optical con-

trast between the ocean and the desert is great enough to yield a striking
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IG. V=17 SIMULATED LIDAR DATA ADDED TO TIROS CLOUD PHOTOGRAPH

similarity to a textbook map of the area. This contrast also demonstrates
how much easier it is to see cirrus patterns against a dark background.
Once the analyst's eye has been drawn to the area by the pattern of clouds
over ocean it is not too difficult to follow the pattern on over the
desert. However, had the dark patch not been there, the cirrus layer

over the desert might easily have been missed by observation of the tele-
vision picture alone. The range soundings provided by the (hypothetical}
associated lidar confirm that the ripples in the desert picture are indeed
caused by the same cloud system that is moving in from the sea. It should
be borne in mind that the horizontal coverage is only 900 km, about one
third of the swath width proposed for a full-coverage, 1000 km, polar-
orbiting satellite. (The + symbol in one of the thickness data position
on Fig. V-17 indicates that the cloud was 10,000 or more feet thick at

that point.)

73




F. Miscellaneous Equipment-Design Considerations

1. Possibility of Eye Damage

One practical upper limit which applies to any space-borne active
optical probing system is the power density which can be tolerated at
the earth's surface before there is danger of permanent retinal damage

to persons on the ground who happen to be looking in the direction of

the satellite.

Data on eye-damage thresholds are as yet incomplete, but a figure
which is currently in common use is that given in the Laser Safety Bul-
letin published by the Martin Company (Martin Company, 1965). " That
bulletin quotes a safety threshold 0.01 joules per square centimeter at
the retina for a 30-nanosecond pulse from a Q-switched ruby laser. It
is stated that this allows a safety factor of 7 over the damage threshold
proposed in a pioneer paper by Geeraets, Ham, et al. (1965). Similar

data has recently been published by Peppers (1966).

In the case of an observer on the ground viewing a satellite-borne
source, the size of the retinal image will never be smaller than the
diffraction-limited spot from the eye lens. This spot will be at its
smallest, the intercepted energy will be largest, and the resulting
power density at the retina will be greatest when the eye is dark-
adapted and its iris wide open. Since the human eye contains enough
aberrations that diffraction-limited resolution is never achieved, use

of this criterion represents an apparently comnservative approach,

On this basis, the maximum radiation field to which humans should

be exposed can be computed from the following relation.

2
(2.44)\1) Ip

s D4

Definitions of the symbols and specific values for a Q-switched

ruby laser and a dark-adapted eye are:
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I = energy density allowable at the eye lens; joules/m2

= wavelength of radiation; 0.7 X 107%m

focal length of eye lens; 2.3 X 10™2n

= diameter of iris = 7.0 X 10 °m

- O = > u
It

= permissible energy density on the retinal surface;
102 joules/m2.

For these values,
-5 . 2
IS = 6.43 X 10 = joules/m

Consequently, as a first approximation and using currently accepted
safety thresholds, a nominal 1-joule pulse from a distant point source
should be spread over a spot at least 140 meters in diameter if the pos-

sibility of accidental eye damage is to be avoided.

The probability of someone actually being in the beam and looking
squarely at the satellite at the time of firing is of course extremely
low and perhaps can be classed with the danger from falling meteorites,
aircraft and satellite debris, etc. On the other hand occasional situa-
tions can exist which would greatly enhance the retinal illumination over
the value calculated above. Laser beams experience localized focusing in
passing through the atmosphere which regularly generate small hot spots
at least one to two orders of magniture more intense than the beam
average. One of the most severe remote contingencies that can be imagined
is the case of an amateur astronomer staring into the heavens with a
large aperture telescope at the instant that a lidar satellite passed

through his field of view and fired in his direction.

For the beam angles and pulse repetition rates receiving principal
attention in this report, the possibility of eye injury would be strictly
probabilistic. That is, there would not be the additional factor of
having the observer's attention drawn to the satellite by a series of
blinking red lights since he would never be in the beam for more than
one pulse. While the eye-damage danger is seen to be low for the energy

densities proposed herein for detecting cirrus cloud, the safety margin
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is small enough that the danger should be re-evaluated for any proposals
requiring appreciably higher transmitter power or smaller beam angles.

4

2., E in Derivi
rrors in Deriving 8180

as a Function of Distance

When an existing volume target can be described by two functions of
distance, B{SO and o, the power density expected at the receiving antenna
for a given incident-power density can be calculated in a straightforward
manner from the lidar equation and can be expressed in photons per unit
time. Even if only one of the two functions is known, a good approximate
prediction of the received power density as a function of time can be
obtained by making the simplifying assumption that the ratio between
B1ISO
regions through the target.

and ¢ can be approximated by a known constant over each of several

The reverse procedure--that of determining the target distributions,
given the receiver power density as a function of time--is more difficult

but again can be accomplished if the simplifying assumption is made about

14
180
cedure, or inversion, are very sensitive to errors in the input data.

the relationships between B and ¢. The results of this reverse pro-

Since noise, quantum effects, and other errors in recording and report-

ing the received signal level are inherent in any practical system and

’
180
0 as a function of distance is the desired output of the system, a care-

since a plot of B as a function of distance and preferably, also of

ful error analysis of this inversion procedure appears fundamental to a
complete specification of the size and complexity of the required receiving
system, Such an analysis has not been made in detail, but a computer

model has been prepared and has been used to provide some very preliminary
checks that the minimum system constants assumed throughout this study are

within reason.
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VI BACKSCATTER COEFFICIENTS

A. Predicted Values

The utility of lidar depends upon the fact that small percentages
of radiation directed at a target will be returned to a measuring receiver.
Quantitative specification of the ability of any target to return some of
the incident energy conventionally is done in terms of a 'backscattering
cross section' which relates the intensity of the return to the energy

density of the incident radiation at the target.

In the completely general case, the returned energy may or may not
all be at the incident wavelength and it may or may not experience some
time delay apart from the normal round-trip transmission time. Depending
upon the precision required in the system analysis, the total back-
scattering cross section can be broken down into components due to
numerous individual contributing effects. It is the objective of this
section to examine some of the mechanisms which return energy from atmo-
spheric target volumes and to assign order-of-magnitude values to the

various effects.

Energy can be returned at precisely the incident wavelength (neglect—
ing Doppler shifts) via Mie séattering from relatively large aerosol
particles, via non-resonant scattering from atoms and molecules (Rayleigh
scattering), or via Thompson scattering from free electrons. If desired,
the latter two cases can be thought of as special cases of the complete
Mie theory. Energy can be returned at wavelengths differing from that
of the incident wavelength by processes of wave-particle interaction
sometimes classified as fluorescence, phosphorescence, and Raman shifting.*
These effects occur to some degree with all atoms and molecules and for

virtually all incident wavelengths. The relevant cross sections are

¥* . . . . :
Brillouin scattering, an extremely weak effect resulting from interac-
tion between electromagnetic waves and acoustic waves, is not considered
here.
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independent of the amount of incident radiation. When the wavelength of
the incident radiation is chosen to correspond precisely to a natural
energy-level transition of atoms or molecules within the target volume,
the probability of photons being subtracted from the incident beam is
greatly increased; i.e., the "coupling' is tighter and more total energy
is taken from the beam and reradiated. This is known as resonant scat-
tering, and has the effect of greatly increasing the backscattering cross
section both at the incident wavelength and for other wavelengths corre-
sponding to multi-step relaxations within the excited atom or molecule.
At wavelengths in or near the optical region the energy return at the

Raman-shifted wavelengths will not show useful resonant increases.

1. Rayleigh Scattering

Rayleigh scattering from atoms and molecules is a very important
effect from the point of view of lidar satellite design. This is so
since its characteristics are reliably predictable, it can always be
counted upon as being present from elevations of interest, and (at least
for the upper troposphere and lower stratosphere) it represents a con-
venient reference level with which weaker or more transient effects can

be compared.

For wavelengths well separated from the absorption lines of the
atmospheric constituents, the Rayleigh scattering cross section Cr of an

individual scattering center is given (Van de Hulst, 1957, page 82) by:

87 ,2m4 2 6 + 36
C - 202 —_— Vi-1
r A (vi-1)
where
A = wavelength of incident radiation
8§ = depolarization factor due to the anisotropy

of the atmosphere

@ = molecular polarizability of scatterer
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Calculations and laboratory measurements (Gucker, 1953) of the
factor § yield a value near 0.035; therefore the fraction (6 -38)/(6 -78)
1s about 1.061. The polarizability @ is approximately 2 X 10_30(m3).
Thus

~-56.-4, 2
C. = 3.96 x 10 ""A (m") (vi-2)
which at the ruby wavelength A = .694u is

1.71 x 10

Il

cr(x=.694) 31(m2)

The total scattering cross section per unit volume of a purely gas-
eous atmosphere is this elementary cross section multiplied by the number

density Nr of molecular scatterers per unit volume,
O = NC (vi-3)

This quantity is also called the Rayleigh attenuation coefficient.
It is that quantity which, when multiplied by the incident power density
and the effective illuminated volume, gives the total power scattered in

all directions from the incident radiation beam.

For pure Rayleigh scattering it can be shown that 3/8m per steradian
of this total will be scattered back toward the source. As a result of
the convention used in defining radar cross sections (See Sec. V-B-1) it
follows that for Rayleigh scattering the volume backscattering cross
section B{SO as used throughout this report can be obtained from:

3

B180

Thus the factor k, which is the ratio of backscattering, B to attenua-

7

180’
tion, o, is for Rayleigh scattering a trusted constant (3/2) and not
subject to the fluctuations encountered when the scattering particles

become large compared to the wavelength.
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Table VI-1 lists values for Nr from the U.S. Standard Atmosphere,
o [from Eq. (VI-4)]

4

1962 (U.S. Government Printing Office, 1962) and for B18

for sea level to 20 km elevation in 1 km increments.

Table VI-1

VOLUME BACKSCATTER COEFFICIENTS B{SO FOR RAYLEIGH COMPONENT
OF ATMOSPHERIC SCATTERING

Height Ny 5{80
(km) (m=3) (m=1)
0 2.55 X 102° 6.55 X 107 °
1 2,31 X 1025 5.94 X 1078
2 2.09 x 102° 5.38 X 1078
3 1.89 x 102° 4,86 X 107
4 1.70 X 1025 4.38 x 10°°
5 1.53 x 102° 3.93 x 10°°
6 1.37 x 102° 3.53 X 10 °
7 1.23 X 102° 3.15 x 10°°
8 1.09 x 10%° 2.81 x 10°°
9 9.71 x 102 2.50. x 10°°
10 8.60 x 102* 2.21 x 10°°
11 7.59 x 102 1.95 x 10°°
12 6.49 x 102 1.67 x 10°°
13 5.54 X 1022 1.42 x 10°°
14 4.74 x 1024 1.22 x 10°°
15 4.05 x 1024 1.04 x 10°°
16 3.46 x 102 8.90 X 107 '
17 2.96 x 102* 7.60 x 107 '
18 2.53 x 1027 6.50 X 107 '
19 2.16 x 1024 5.56 X 10 '
20 1.85 x 102* 4,75 X 10”7
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2., Mie Scattering

A type of scattering of key interest in the design of a cloud-ranging
lidar is Mie scattering from particulate matter having dimensions appre-
ciably larger than the wavelength of the incident radiation. For such
particles the elementary scattering cross section Cp is about twice the

geometrical cross section.

The scattering pattern does not resemble the symmetrical-dipole
pattern of Rayleigh scattering, but can be quite irregular and complicated
(Middleton, 1958; Van de Hulst, 1957;Deirmendjian,1964). The pattern is
a function of the particle-size-to-wavelength ratio distribution, dielec-

tric characteristics, and particle shape.

Usually Mie scattering is predominately forward rather than backward
with the result that the factor k, in the relation B{SO = ko is often
less than unity. SRI calculations for a random distribution of water

spheres having radii greater than 3 microns give an average value of

0.625 for k.

This value, together with the aerosol distribution is Elterman's
Clear Standard Atmosphere (Elterman, 1964), have been used in computing
values for the aerosol contribution to total B' for various elevations
as plotted in Fig. VI-1. (The value k =0.625 is most accurate for water

spheres, but is a reasonable approximation for other aerosol components. )

From this figure it is apparent that even on "clear' days (horizontal
visibility of about 25 km at sea level for the Elterman model ) the aerosol
backscattering predominates over the molecular backscattering for all

elevations below 4 km (13,000 ft).

The total backscattering coefficients, B of Fig., VI-1 are then

4
180’
the minimum values which would be encountered by the lidar satellite and
they represent a baseline above which reflections from clouds and all other

transient phenomena must rise.
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Table VI-2 lists a range of typical water-cloud and haze conditions,
together with the associated computed aerosol attenuation coefficients,

and anticipated volume backscatter coefficients, B under the assump-

‘
180’
tion that k ~ 0.625,

These values are also displayed graphically in Fig. VI-2.

Table VI-2
PREDICTED VOLUME BACKSCATTER COEFFICIENTS FOR WATER CLOUDS AND HAZES

Average
o . N s B’
Condition Radius, a p P . 180 k
(u) (em=3) (m-1)
Dense Water Cloud 10 200 3.2 x 1071 2 x 1071 0.625
to to
1.6 X 10°2 1 x 1072
. -2 -2
Light Water Cloud 20 10 1.6 X 10 1 X 10 0.625
to . to
4.0 x 10”3 2.5 X 10°°
. -3 -3
Thick Haze 4 50-200| 4.0 X 10 2.5 X 10 0.625
to to
1.1 x 10°° 7 x 1074
-3 -4
Moderate Haze 2 50-200| 1.1 X 10 7 X 10 0.625
to to
4.8 x 1073 3 x 102
. ..=3 -4
Light Haze 1 500 4.8 X 10 3 X 10 0.625
to to
1.6 x 10”4 1 x 1072

3. Electron Scattering

The formula for Thompson scattering from a free electron is:

81 2
C = —r
e 3 "o ’
where
2
_ e
s ° Zdngmez
o iTe me
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FOR VARIOUS CLOUDS AND HAZES
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e is the electronic charge, €5 is the dielectric constant of free space,

m is the electronic mass, and ¢ is the velocity of light.

The value of Ce is

c, = 6.7 X 10”292 .

12
Maximum electron densities in the F region are on the order of 10 electrons/

3
cm , and the polar scattering pattern is the same as for Rayleigh. Thus,

’
180

free electrons in the path between the satellite and earth is

the maximum volume backscattering pattern coefficient B expected from

12 29

B! = KNC  ~ 1.5 X10 "% X 6.7 X 10

-16 -1
] 10 6m
Free-electron scattering is thus seen to be ten orders of magnitude
below Rayleigh scattering from 10 km elevation (the approximate lower
threshold of sensitivity for the proposed lidar system) and its effect
either as a potential target or as background noise should be completely

negligible,

4. Raman Scattering

Raman scattering is discussed in some detail in Sec. X. Raman cross
sections are typically about 3 to 4 decades lower than Rayleigh cross

sections for the same gas.

5. Fluorescence

Fluorescent radiation occurs when atoms or molecules, excited by an
external source, decay toward their ground states, usually after a time delay
-8
on the order of 10 seconds or less. This radiation may take place at any

of several wavelengths, depending upon the atom and its level of excitation.

Unless enhanced by operating with an excitation wavelength at or
near a resonance line, the cross sections for fluorescent eiiects wiii

be smaller than those for the Raman effect in targets of meteorological
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interest. Thus, they appear to be of doubtful utility. No suggestions
for utilizing nonresonant fluorescence have come to the attention of

the authors.

6. Resonant Scattering

When the incident radiation frequency corresponds exactly with one
of the natural atomic molecular resonances of an atmospheric constituent,
individual particle scattering cross sections are obtained which are many
orders of magnitude larger than Rayleigh cross sections for the same con-
ditions. In addition to the problem of precise frequency control, however,
a number of conditions regarding the density of the resonant species and
of the surrounding gas must be satisfied in order to realize the effect.
The quantitative evaluation of resonant scattering is quite involved and
has not been attempted herein, other than to determine that the maximum
expected volume backscatter coefficient B{SO for a typical natural

-12
resonant effect (ionized nitrogen N; at 400 km elevation) is about 10 to

10_15m—1. It thus resides on the scale between Raman scattering and
Thompson scattering and is well below the detection threshold of the lidar
systems considered herein. Larger resonant-backscattering coefficients
are encountered in the upper atmosphere following high-altitude nuclear
blasts. While some of these data appear in open literature* most are

classified. A fairly detailed treatment of resonant scattering from both

natural and nuclear-weapon causes is given in reference.T

B. Experimentally Determined Volume Backscatter
Coefficients for Cirrus Clouds

The vast majority of lidar cloud signatures which exist in the SRI
files and, to our knowledge, in any other similar collection contain
only qualitative information. A number of different methods have been
used at various times to provide some degree of absolute amplitude cali-~
bration, However, in spite of continued refinement of techniques, one

or more items from a long list of practical difficulties usually have

* Latter and Le Levier (1963).
t vassiliadis (1965).
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precluded obtaining even order-of-magnitude estimates of backscatter
coefficients at the time when the most interesting cloud situations

were available. For example, differential thermal expansion in the
equipment has made it very difficult to correlate calibrations made at
night (when they are easiest and most accurate) with data obtained during
the day. Only during the final weeks of the work reported herein have
equipment and technique improved to the point where it now appears possible

to provide reliable and consistent amplitude calibration, day or night.

In brief, the presently preferred method is to operate with beam~
widths and optical bandwidths narrow enough and with sufficient trans-
mitter pulse energy that when the transmitter and receiver beams are
properly coaligned one is sure of having enough return from the relatively
reliable Rayleigh molecular backscatter from (nearly) clear air at a
suitably chosen high altitude to clearly override the background noise,
Unknown targets are then compared in amplitude against this reference.

Tentatively, the region around 10 km elevation appears to be a good choice.

This elevation is only slightly above the so-called isopycnic level at
about 8 km where atmospheric densities usually do not deviate by more than
1 or 2%, regardless of season or location (Handbook of Geophysics, 1965,
page 3-23). 1In addition, the data of Elterman (1964) indicate that the con-
tribution to backscatter from particulate matter normally is at a minimum at
about 10 km, where it is less than 1% of the gaseous backscatter component
(see Fig. VI-1). Even allowing for occasional increases in the aerosol con-
tent by a factor of ten, and without any knowledge of prevailing pressure
soundings, it then appears that we can count on knowing the volume backscat-
ter coefficient of air in this region to ilO% or better. This is signifi-
cantly better accuracy thanris achievable by extrapolation from calibration
measurements carefully made on ground-based targets and is considered

adequate for present purposes.

Since other targets roughly ten to one hundred times larger can
then be compared directly to this return, no measurements need be made
calihration attenuators, or low-altitude atmo-

spheric absorption.
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The method requires lidar beamwidths and optical bandwidths narrow
enough to insure that with the available transmitter power the Rayleigh
return will be measurably above the background noise when the transmitter
and receiver beams are properly coaligned. The SRI Mk II lidar now has
this capability. It also requires that a patch of clear air be found
at approximately the right elevation. By using the (uncalibrated) lidar
waveform as a guide, location of a suitably clear region normally has

not been a problem.

Using this technique we obtained during the week of 14 March 1966
what we believe to be the first daytime measurement of backscatter co-
efficients and vertical extent of very weak cirrus clouds when conven-
tional daytime visual observations also were possible. Figure VI-3
shows A-scope traces taken on an afternoon when both clearly visible and
marginally visible cirrus was present. Figure VI-4 is a photograph of
the lidar and of the general cloud situation taken during the run. For
the particular waveforms shown in Fig. VI-3, the laser was fired when
visible cloud was in the field of view. Other shots fired between con-
spicuous clouds and into light blue sky produced returns from only the
higher, less dense layer which was apparently quite uniform and which
persisted all afternoon. On the day of the run, the pertinent lidar

characteristics were:

o

Transmitter wavelength, 6943A

Transmitted energy, 0.3 joule per pulse (Q—switched)
Transmitter beamwidth, 0.3 milliradian

Receiver field of view, approx. 1.5 milliradian
Receiver optical bandwidth, 12.5

Overall optical efficiency, approx. 10 percent.

With these constants, the photoelectron count due to background
light was 11 to 15 pulses per microsecond, which accounts for over half
the "fuzz" on the waveform baselines above 30,000 feet. Subsequent
transmitter-receiver convergence techniques permitted the receiver view-
ing solid angle (and consequently the background noise) to be reduced by
almost an order of magnitude. While this improvement does not make too
much difference in the appearance of the A-scope display on the scale

shown in Fig, VI-3,it does greatly facilitate comparing signal levels
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TIME: 1320 PST
LIGHT CIRRUS VISIBLE OVERHEAD
RETURN FROM 23-25,000 f. CORRESPONDS
TO Blge= 2.0x10-4 m-1
RETURN FROM 42-44,000 . CORRESPONDS

Sl
TO Bigo= 1x 105 me!

TIME: 1408 PST
LIGHT BLUE SKY GENERALLY OVERHEAD
LIGHT CIRRUS DIRECTLY OVERHEAD
RETURN FROM 25-28,000 ft. CORRESPONDS
TO Bigo=2x 1074 m™!

RETURN FROM 36-44,000 1. CORRESPONDS
TO B g0 = 2x10-5 m"1

TIME: 1626 PST
TRANSLUCENT CIRRUS OVERHEAD
RETURN FROM 21-27,000 ft. CORRESPONDS
TO 8% a0 = 2.0x10°% m*! (peak)

RETURN FROM 31-33,000 ft. CORRESPONDS
TO 8 g0 = 1.0x10°8 m-!

<+———— SIGNAL INCREASE — linear scale

o} 10 20 30 40 50
ELEVATION —thousandsof feet

AFTERNOON OF MARCH 17, 1966, MENLO PARK, CALIF. LEVATION = 90°
CLEAR BLUE SKY; BRIGHTNESS =
1000-1500 1. LAMBERTS
VISUAL OBSERVATION: UNIFORM, LOW DENSITY
VERTICAL SCALE: 50 mv/div FOR TOP TWO TRACES CIRRUS AT HIGH ALTITUDE; 4/10 COVERAGE OF LOWER
100 mv/div FOR BOTTOM TRACE CIRRUS LINES OF MEDIUM DENSITY
ACROSS 5000 PMT ANODE LOAD RESISTOR

m

FIG. VI-3 LIDAR RETURNS FROM MEDIUM AND WEAK CIRRUS SYSTEMS
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by pulse counting. Use of this procedure has now made it clear that

marginally visible cirrus layers, one or two km thick, can have volume
-5 -1

backscatter coefficients at ruby wavelength of even less than 10 m .

It has also become very apparent how imprecise is the description "mar-

’ -5
~ 10

180

and thickness 1000 to 2000 feet persisted. through the day with little

ginally visible". On one occasion, a weak cirrus shield with B

change as monitored by the lidar. However, the visibility to human
observers on the ground varied from subvisible to definitely overcast,
depending upon the sun angle, low-altitude haze conditions, and possibly
other factors. It was evident that color contrast plays an important role
in defining the daytime visibility of cirrus and should be considered in

any serious attempt to correlate lidar data with visual observations.

The strongest consistent returns measured from cirrus heights to

-3 -1
date correspond to B ~ 1 X 10 m as determined by the attenuated

']
180
return from a ground-based plywood test target at equivalent range.
Occasional brief echoes of very high amplitude have been noted near
the bottom or top boundaries of cirrus layers. It has been presumed
that these may result from chance specular reflections from flat-plate
ice crystals floating principally horizontally, like falling leaves.

A similar explanation has been given for the "'sun-dog" or "under-sun"
effect often observed when flying over some forms of cirrus. Boeing
investigators reported this phenomenon to be so strong as to damage
their thermocouples during infrared measurements of cirrus (Boeing

Company, June 1962).

Lidar reflections from low-level water clouds usually have been
strong enough to cause severe overloading in the photomultiplier, and
very little quantitative data are yet available on these clouds.,
However, attenuation coefficients (or extinction coefficients, as they
usually are known when measured in luminous units) have been measured
in the past by numerous investigators for water clouds and hazes, and
the lidar returns appear to be not markedly different from what would

be expected from the relation B

-~.~ = KO, where k has a value of approx-
10UV

imately 0.6,
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7/
The values of 8180

best currently available working estimates for all types of clouds and

given in Fig. VI-2 are being used at SRI as the

hazes in the visible region. It is hoped that the data can be refined

appreciably in the near future.

C. Three-Day Lidar Test Run to Monitor Visible
and Subvisible Cirrus

An extended test run was performed midway through the project in
an attempt to learn whether lidar-measurable but subvisible cirrus cover
might be more common than originally anticipated. While the results
were largely negative, the experiment is briefly described here for
completeness. At the time these measurements were made, the lidar
characteristics were such that cirrus corresponding to B{SO &:10—4 -1
would have had to be present in order to be visible above the daytime
noise level. At night, however, the system would have been capable of

detecting anything more than four or five times the Rayleigh return level

up to 50,000 feet elevation.

The lidar at the SRI facility in Menlo Park was fired along the
vertical once each hour during the three-day period from noon on 20 July
1965 until noon on the 22 July 1965. During this period a series of
migratory cyclones were moving slowly eastward around the northern
periphery of a large subtropical anticyclone in the eastern Pacific
[Fig. VI-5(d)]. It was anticipated that lidar returns from cirrus were
forthcoming as one of these cyclones, accompanied by multiple cloud
layers (including cirrus) was approaching the area at the start of the
period. However, the storm veered eastward before reaching this far
south so that only haze and a few widely scattered low stratus clouds
(normal conditions for the area) were observed during the period. The

vertical lidar beam did not intercept any visible clouds during the

three days of observations,

The bright cloud areas immediately to the north of the San Francisco
region in the pictures made by TIROS IX as it passed overhead [Fig. VI-S5,
(a)-(c)] approximately outline the areas of multiple cloud layers associated

with this and other storms in the series mentioned above, Note that the
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cloudiness near the San Francisco area has a dull appearance. This is

characteristic of satellite-viewed fog or low clouds.

Figure VI-5(e) shows lidar return as a function of altitude when
the lidar was fired close to the times that TIROS IX was photographing
the area on each of the days during the period. No returns from clouds
above 10,000 feet or below 50,000 feet are indicated, although intensity
of return does increase significantly below 10,000 feet, particularly
on the last day of the period. This more intense low-level return was
due to the normal increase in particulate concentration near the surface.
The further increase in low-level return at 1605 GMT on 22 July was
caused by the stagnation of the air near the surface during the pre-
ceding 24 hours which allowed the particulate concentration there to

increase significantly.

94




VII AN APPLICATION OF SATELLITE-LIDAR DATA
TO INFRARED RADIATION STUDIES

A, Introduction

Aircraft have observed thin ice-crystal clouds that are often
invisible from the ground and cannot be seen on daytime cloud photo-
graphs from weather satellites (Appleman, 1961). The frequent occur-
rence at night of thin layers of cirrus that were undetectable by visual
means has been established with observations from a ground-based lidar

(SRI, private communication).

The effect of tenuous cirrus clouds on the outgoing infrared radia-
tion from the earth's surface and the lower troposphere was first sug-
gested on the basis of measurements made with balloon-borne radiometers

(e.g., Gergen, 1957; Riehl, 1962).

Zdunkowski (1965) demonstrated by means of a computational model
that visually transparent cirrus clouds can appreciably effect the inter-
pretation of long-wave radiation measurements of the type that have been
obtained from the medium-resolution radiometers of TIROS (e.g., Channel 1,

6.0 to 6.5y and Channel 2, 8 to 12u).
The purpose of the following presentation is:

(1) To show the effect of two cirrus-cloud models on the
interpretation of various infrared radiation measurements
that are being planned for the Nimbus meteorological
satellite series

(2) To show how cirrus clouds of the type described by the
two models can be detected by a satellite-borne lidar

(3) To demonstrate how lidar data on tenuous cirrus clouds
can be converted into estimates of correction factors to
be applied to long-wave radiation measurements from
satellites.
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B. Computed Effect of Ice Crystal Clouds on Infrared Radiation Measure-
ments from Satellites

1. Selection of Cirrus-Cloud Model

We wish to consider a cloud model that represents large-scale thin
ice-crystal clouds of the type that produce the 22° halo. These thin
ice clouds (e.g., cirrostratus) are observed very frequently in advance
of frontal cyclones. Minnaert (1954) states that "the most observant

see halos on 200 days a year.'

When the optical phenomenon of the halo
cannot be observed (on a moonless night or in the presence of a low-
level haze) the thin cirrostratus may go undetected. Thus, thin ice
clouds associated with the halo must occur even more frequently than

actual observations of the halo indicate.

All clouds giving rise to halos are believed to be composed of
regularly shaped ice crystals that are randomly oriented. The random
orientation of the regularly shaped ice crystals (hexagonal prisms)
permits the adoption of a cloud model consisting of monodisperse spheri-

cal ice particles to which an effective radius is assigned.

The cloud model used in this study has spherical ice particles with
an effective radius of 120p. This value is essentially that used by
Zdunkowski, and is also very close to the effective radius listed by
A. M. Borovikov et al. (1965) for ice crystals in altostratus clouds
(121u). The number densities used are those suggested by Zdunkowski

3 cm_s) and for visually semi-transparent

for visually transparent (2 X 10
(2 X 1072 cm'3) cirrus clouds that have a thickness of 1000m. The
measurements by Borovikov et al. give an average number density of

2 X 10—3 cm_3 for ice crystals in altostratus clouds. The 1000m thick-
ness is in good agreement with the seasonal mean thickness values for
cirrus clouds as determined from the data of Project Cloud Trail

(Stone, 1957), and is also compatible with a thickness of "a few thousand
feet" for a visually semi-transparent cirrus cloud cited by Blau and
Espinola (1965). Table VII-1 summarizes the physical dimensions of the

two ice cloud models.
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Table VII-1
CLOUD MODELS USED IN COMPUTATIONS

Model I Model II
High Visual Medium Visual
Transparency Transparency
Effective Radius (a) 120p 120u
Number Density (N) 2 x1073 em3 2 x 1072 ¢en~3
Thickness (H) 1000m 1000m

2. Computations of Transmission and Absorption

For the two cirrus-cloud models specified above, the total attenua-
tion due to both absorption and scattering processes is computed as a
function of wavelength for the infrared region of 3.0p to 200u. The
real and complex parts of the refractive indices for ice used in the

computations are those given by Kislovskii (1959) for T = 10°C.

The total attenuation coefficient 0 equals the sum of the attenua-

tion coefficients due to scattering and absorption:

where
2
Oy g = j Ta Qs,a(a,n)n(a)da.

In this expression TTaZQS a is the total scattering (s) or total absorp-

’
tion (a) cross section, as the case may be, for a single sphere of radius
a and refractive index n. n(a)da represents the number of ice spheres

of radius a in the interval da. For cloud models I and II

o = ﬂ(lZOp)ZQ(lzop,n)N

I,11 1,11 :

The efficiency factors for scattering and abosrption (QS a) are obtained
?
from the Mie scattering theory by averaging over the radius interval

al(Aa)a2 = 110u(1p)130p. Results are applied to the eifeciive radius
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a = 120u. The correction introduced by Zdunkowski [Qz = QS -
2/(QS + Qa)] is applied to Qs in order to account for that part of the
scattered radiation that is diffracted into the forward direction and
that should be added to the transmitted radiation. Thus for the visible

3
wavelengths when no absorption takes place, Qs = 2 and Qs = 1.

Figure VII-1 shows the fraction of the incident infrared beam radia-
tion that is lost due to both scattering and absorption (1 - exp(—GH)]
and that fraction which is lost due to absorption only [1 - exp(—OaH)]
for cirrus-cloud models I and II. The total attenuation amounts to
10 to 15 percent of the beam radiation incident on cloud model I and to
60 to 80 percent of the beam energy incident on cloud model II. The
importance of absorption is evident. Except for the "window' regions
near 5p and 7p, 80 percent or more of the total energy attenuated from
the incident beam is attenuated due to absorption between 3.0y and 100u.
It is the large absorption of the cloud models in these infrared wave-
lengths that warrants a further study of their effect on infrared radia-

tion measurements from satellites.

For the visible wavelengths the transmissivity equals 91 percent
for model I (assumed visually highly transparent) and 40 percent for
model II (assumed semi-transparent).

3. Approximated Effects of Cloud Models on Infrared Measurements
from Satellites

The effects of the attenuation and absorption of infrared radiation
by the two cloud models on the interpretation of satellite measurements
of long-wave radiation that originates from sources below the cloud
level (~200mb), can be approximated. To do this, a "'target' black-body
radiation source of temperature TB is placed below the cloud model and
the upward hemispheric flux of radiation, in various infrared spectral
regions, is attenuated as it passes through the clouds. The transmitted
plus the cloud-emitted radiation is then converted to the temperature
Te of an equivalent black-body. Differences between Te and TB are a
measure of the effects that the cloud models have on the interpretation

of satellite measurements of long-wave radiation emitted by the earth's
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surface and the lower troposphere. The attenuation is computed by
applying the attenuation factor e_OH which involves the simplifying
assumption that the upward hemispheric flux from the "target' black body
arrives at the lower cloud boundary as beam radiation. The cloud-
emitted radiation is computed from Kirchhoff's Law taking an emission
temperature of 230°K (-43°C) and an absorptivity equal to 1 - exp(—OaH).
This value of the absorptivity is correct only for small values of cH
such that exp(—GaH), exp(—OSH), and exp (-0H) can be expanded into series
keeping first order terms. The absorptivity can be obtained in this
fashion for cloud model I, but not for model II. Computations will
therefore be limited to cloud model I. Considering the large absorption
(approximately 60 percent of the incident beam energy), cloud Model II
is highly opaque to long-wave radiation and the effect on identifying

infrared emission sources located below such a cloud is obvious.

Figure VII-2 shows a comparison between TB (the true temperature of
a "target" black-body radiation source located below cirrus-cloud
model I) and T, (the temperature deducted from infrared measurements
made above the cirrus cloud) for four infrared regions and two black-
body temperatures. The infrared regions are selected to coincide with
the nominal bandwidths of various sensors that will be placed in the
Nimbus B and C meteorological satellites (expected to be launched in
late Summer of 1967 and Spring of 1966, respectively). The selected
"target' black-body temperatures of 300°K and 250°K correspond to the
average terrestrial temperature and the average mid-tropospheric tem-
perature, respectively. Table VII-2 lists the selected infrared regions
together with the meteorological information to be deduced. Also listed
is the essential information of Fig. VII-2, i.e., the approximate errors
(TB - Te) in the determination of the 'target" black-body temperature
due to the interference by a visually highly transparent cirrus cloud
of the type represented by cloud model I. It can be seen from Fig., VII-2
and Table VII-2 that for a 'target" black-body temperature of 300°K, the
difference between T300 and Te is 2 to 3 degrees for the spectral region
3.5 to 4.0p and increases gradually to 7 to 8 degrees for the wavelength
region 14 to 16u. For a black-body temperature of 250°K, a steady
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increase of T2 - Te with wavelength is again shown but differences are

50
less than at 300°K, ranging from 1 to 2 degrees at 3.5 to 4.0p to

3 to 4 degrees at 14 to 16u.

C. Detection of Cirrus-Cloud Model I by Satellite Lidar

In order to evaluate the capability of a satellite-borne lidar to
detect cirrus clouds of the type described by cloud model I, it is neces-
sary to compute the lidar pulse energy that is scattered back to the

receiver by this cloud model. For this purpose a volume backscattering

/

coefficient 8180

is defined as:

’

2,
5180 = 4ﬂfﬂa i

1800n(a)da

where i, o0 = (X2/8ﬂ2)[i1(180°) + 12(180°)] = the flux scattered per unit
solid angle in the 180° direction for a single sphere of radius a and
for unit flux incident on the geometrical cross section maZ, 11(180°)
and i2(180°) refer, respectively, to the intensity of radiation vibrat-
ing perpendicular and parallel to the plane through the directions of

propagation of the incident and scattered beams.

The validity of the assumption that a cirrus cloud can be represented
by a concentration of homogeneous ice spheres with perfectly smooth sur-

faces becomes critically important when the volume backscattering coef-
14

180 o
lengths (e.g. A = 6943A) on account of the phenomenon of the glory

ficients B for such cirrus clouds are to be computed at optical wave-
(Van de Hulst, 1957). The variation in the angular scatter efficiency
i¢is the region of the glory (i.e. the region near ¢ = 180°) is shown
in Fig. VII-3 for a Mie-scattering sphere with a radius of 120p and a
refractive index of 1.33*. The wavelength considered is that of the
ruby lidar (\ = 69433). The bright "rings" increasing in intensity

toward a sharp maximum at ¢ = 180° are evident. The magnitude of the

* The glory phenomenon as deiined in iihis paper is due to the variation
in the angular scattering efficiency near 180° shown in Fig. VII-3 and
is therefore not restricted to refractive indices between /2 and 2,
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large maximum at 180° is greatly dependent on the radius of the sphere,

Figure VII-4 shows graphically the variations of 4mi 00 between a, =

18 1

120y and a, = 120.44p. The graph is constructed by joining with straight

lines values of 4ﬁ11800 computed for intervals of Aa = 0.01p.
It is evident that the glory phenomenon leads to large values of

the computed backscattering coefficient B{BO'

Although the glory enters prominently into the explanation of the
exceptionally high radar backscattering cross sections obtained from
large hailstones (Probert-Jones, 1964), Van de Hulst cites a single
reference that gives evidence against the existence of an optical-
wavelength glory phenomenon in ice clouds. More evidence should be
obtained by comparing the backscattering coefficients deduced from the
lidar-signal return of cirrus clouds with those predicted on the basis

of cirrus-cloud models such as model I.

If tenuous cirrus can be represented by cloud model I--i.e. if the
glory phenomenon is accepted--a backscattering coefficient can be com-
puted from the exact Mie equations. In this case an average value of
the quantity 4ﬂ11800 over a narrow range of radii will be applied.
Figure VII-5 shows such average values for three narrow ranges of radius
centered at approximately 100y, 120u and 140u. It can be seen that the
variation with small changes in effective radius is quite small. Adopt-
ing the average value of 2,85 for a = 120 to 122u, the volume backscat-

o]
tering coefficient B/  _ for cloud model I (A = 6943A) can be written as:

180
’ 2 ~4 -1
Bigo = 2.85m(120u) N = 2.58 X10 'm .
The extinction coefficient UI is equal to
-5 - 3*
o = Q:TT(IZOp,)zNI - 9.04 X10°w 1 for Q =1 ,
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so that

= 2.85 .

If we cannot apply the angular scattering patterns of large spheres
in the Mie theory near and at ¢ = 180° to the ice crystals of cirrus

clouds, the following alternatives can be considered.

(1) The backscattering pattern given by the theory of geo-
metrical optics (ray tracing) can be applied. In this case
ithe effect of the glorv is not accounted for., Adopting
the scattering pattern of a very large water drop given
by Van de Hulst (p. 232) the backscattering coefficient
8180 for cloud model I can be written:
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(2)

0.098ﬂ(120p)2NI

w
[l

180

8.86 X 107 8n 1

Il

The extinction coefficient o. would remain equal to
9.04 X 10-%m™1 so that

It can also be assumed that the large (compared with the
wavelength) particles of a cirrus cloud distribute the
reflected and refracted part of the scattered radiation
uniformly in all directions (isotropically) while the
diffracted part remains concentrated into a narrow for-
ward angle. In this case

s _ L
180° ~ 4m
and
’ 2 -5 -1
= — X .
Biso m(120p) N 9.04 X 10 "m :
also
o = ﬂ(120p)2NI - 9.04 X 107°m™ Y for Q: = 1
Thus
Bl
180 _
[e)

It can be assumed that the ice crystals of cirrus clouds
represent large spheres whose surface elements are diffuse
reflectors following Lambert's law. The scattering pat-
tern of such spheres as computed by Schoenberg is given
by Van de Hulst (p. 112). Assuming 50 percent surface
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reflectivity and an isotropic distribution of the
refracted part of the scattered radiation, the volume
backscattering coefficient 8{80 can be written as:

’ 0.50 = 0.50 2
67 —— ——
B1so 4n(%.6 T ) m(120u) Ny

1.66 x 10”1

The factor 2,667 is the ''gain' of the Lambert-reflected
radiation relative to isotropic scattering in the direc-
tion ¢ = 180° as given by Van de Hulst. The extinction

coefficient cI equals

op = ﬂ(lZOu)zNI = 9.04 X 10 °pn !

and the ratio

’
180°°
lidar return of tenuous cirrus clouds, with the various values computed

A comparison of B8 0, and their ratio as determined from fhe
above would greatly enhance our understanding of the backscatter charac-
teristics of cirrus clouds. Such understanding could in turn help to
define the type of model that can represent cirrus in studies that
involve infrared radiation. The waveforms representative of cloud
model I (with the various backscatter characteristics) that could exist
at the satellite-borne lidar receiver under various conditions of back-
ground lighting can be predicted using the outline of Sec. V-B-2 and

7

the values of 8180 and o; given above.

D. Conclusions

In order to demonstrate an application of satellite-borne lidar
data on tenuous cirrus clouds to meteorological problems that involve
infrared radiation, an attempt was made to approximate the errors that

arise when temperatures characteristic of the earth's surface and the
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lower troposphere are determined from satellite measurements when tenuous

cirrus clouds are present.

The computational model used is simple and more sophistication is
necessary although more accurate information on the shape and size dis-
tribution of ice crystals in cirrus clouds and on the refractive index
of ice may have to be obtained first. The validity of the assumption
that the cirrus clouds can be represented by a number of ice spheres
with a uniform effective radius in order to compute bulk transmission
and absorption, should be more objectively examined with a comparison
between actual lidar observations and predicted values of the volume
backscattering coefficients and extinction coefficients. The refractive
indices for ice used in the computations were limited to a temperature
of -10°C which is much warmer than the temperature of <-40°C that is
generally assigned to ice clouds. Kislovskii states the effect of lower
temperatures on the refractive index qualitatively as follows:

Upon cooling, the band near 3u increases significantly
in intensity (the reflection attains a maximum of
12 percent). The weak reflection band near 6y becomes
even weaker. The band near 12.5up shifts toward the
short-wavelength side.
These remarks imply that the absorption may have been larger than com-

puted in the region 10-11p and smaller in the region 6.5-7.0u.

At this point it may be warranted to speculate on a gquantitative
application of the lidar data. If the total extinction e-cH of the
lidar signal by the cirrus cloud, and its total geometric thickness H
are retrieved from the basic lidar data, an average or "effective"
value of ﬂazN can be determined when it is assumed that, for the wave-
length of the lidar (A = 69433)

3*

2
¢ = Qs(TTa N)effective

3
where Qg =1,
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Furthermore, if upon impact of the lidar pulse on the cloud boundary
an accurate value of 8{80 can be determined, the ratio 8{80/0 represents
an average value of the quantity 4ﬂ11800 shown in Fig. VII-5, provided
the backscatter from a cirrus cloud can be represented as that from a
concentration of ice spheres that scatter according to the Mie theory.
This average value can in turn provide a "fix" on an average "effective"
radius a, using a precomputed graph such as that shown in Fig. VII-5,
Because of the small variation in the average value of 4ﬂi180° with

effective radius, a high degree of accuracy is required in the determina-

’
180

values of the refractive index of ice, the total extinction and obsorp-

tion of B and 0. With the derived quantities (a, ﬂazN) and correct
tion cross sections can be computed with the help of the Mie theory for
various infrared regions of interest. Correction factors (e.g. black-
body temperature corrections) to be applied to satellite measurements
of infrared radiation can then be estimated as discussed in Sec. II-B

and Sec, II-C.

When preliminary lidar observations disagree with values of the
volume backscattering coefficient and the extinction coefficient as
computed from the Mie equations, a dependence of 8{80 on the effective
radius can no longer be maintained in the case of geometric optics,
isotropic scattering and Lambert reflection, and other ways must be
found to obtain a reliable value of effective radius for further compu-

tations in the infrared wavelengths.
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VIII CURRENT LASER TECHNOLOGY

The specific lasers and types of lasers considered in this report
are, by and large, those that were typical of the state of the art when
this study began. However, substantial advances in the development of
these lasers have occurred during the course of the work, and new and
fascinating developments have resulted in new types of lasers. Further-
more, there is every reason to believe that the pace of such developments

will continue, at least into the near future.

Q-switched ruby lasers have not yet been surpassed in peak power
9
output, however. Short pulses in the gigawatt (10  watts) region are
reported even in the unclassified literature, i.e., approximately 10 joules

in 10-nanosecond pulses,

Typical of the performance of recent high-repetition~rate solid-

state ruby lasers is the following small Siemens & Halske system:

Material Ruby 1 X 1/8 inch
Threshold for lasing 2.5 to 3.5 joules

Pump pulse energy 3 to 15 joules

Pulse repetition rate 60 to 120 pps

Output power, average 1.6 watts

Output power, peak 60 watts (not Q-switched)
Efficiency 0.2 percent

Pump pulse length 2 ms

About an order of magnitude increase in overall efficiency can be realized
in low-threshold neodymium-doped crystal lasers such as calcium tungstate
or yttrium aluminum garnet (YAG), which lase in the infrared region around
1.06 microns. All of these materials can be continuously pumped and then
Q-switched at high repetition rates with little reduction in the efficien-
cies realized for continuous (CW) operation, as long as the time between
subsequent pulses is comparable to the fluorescent lifetime in the

material.
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Hundreds of watts of average power output have recently been demon-
strated in at least two lasers., The first was demonstrated by Union
Carbide using Nd:YAG at 1.06 microns, by pumping with a vortex-stabilized
plasma torch. Such a system could presumably be Q-switched at high
repetition rates. The overall efficiency is still low (the order of
0.2%), although it can be improved somewhat by straightforward techniques.
Perhaps more interesting is the carbon dioxide (coz) laser, in which hun-
dreds of watts of average power in a single mode have been achieved with
efficiencies in excess of 10 percent. The output is in the far infrared
at 10.6 microns, fortuitously in an atmospheric window. Mode-selecting
techniques have been demonstrated that can tune the laser to discrete
lines within the 9.2 to 9,8y and 10.2 to 10,8y bands. Because of the
relatively longlifetimes, this system can also be Q-switched at high
rates with large gains in peak-to-average powers, but at the expense of
mul ti-mode operation. In principle, properly designed mode-selection
techniques would solve this problem. The 002 laser is in a class called
"molecular” lasers, an area that is receiving intensive study at the
moment, and an area in which one can confidently expect rapid, even

spectacular, developments in efficient lasers.

Another type of laser that is of great potential interest for satel-
lite applications is the injection laser. Normally these are semiconductor
Jjunctions in which the recombination radiation produced by injecting
current across the junction is used to produce lasing action in an opti-
cally resonant cavity. In general these devices are quite small, produc-
ing low peak powers, and many of them require low temperatures, However,
they can be very efficient, on the order of 10 to 30 percent, which is
of great importance in space applications. It is entirely possible that
the total energies and powers required may be achieved in a suitably de-

signed array of junctions.

For satellite applications, the possibilities of optically pumping
laser materials using solar radiation is particularly attractive. This

was recognized early in the course of laser R&D efforts, and a good deal
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of development work has already been accomplished, principally by the

following groups:

Electro-Optical Systems, Inc.,, Pasadena, Calif.
Radio Corporation of America, Camden, N.J.

American Optical Company, Southbridge, Mass.

It is expected that average output power on the order of 1 watt could

be realized from Nd:YAG with a 30-cm diameter solar collector.

Substantial improvements in the performance of existing lasers are
also to be expected in the near future. For instance, doping Nd-crystals
with additional ions such as chromium has produced substantial. improve-
ments in efficiency by effectively broadening the useful absorption bands
of the material, permitting better utilization of black-body pump radia-
tion. Better quality crystals, more efficient and reliable flash lamps,
and better coupling to the laser materials are all engineering develop-

ments that can be expected to further improve the picture.
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IX NONRUBY LASERS

A. General

The possible utilization of laser wavelengths other than ruby would
involve equipment performance tradeoffs as well as atmospheric-
propagation considerations. If the choice is limited to laser sources
capable of high peak output powers, three predominant selections are:
neodymium-doped glass (1.06u), the second harmonic of neodymium-glass

(0.53u) and the second harmonic of ruby (0.347y). Some of the factors

fundamental to system performance are depicted as a function of wavelength

in Fig, IX-1., These factors are relative, and are normalized to the per-
formance of a ruby lidar. Values of relative performance (K) greater
than unity at a particular wavelength indicate improved overall system
performance with respect to ruby; values of less than one indicate in-

ferior system performance. .

The curves of detector quantum efficiency for various photocathodes
(Marked S-1, S-5, S-17, S-20) illustrate the marked variation in this

parameter with changes in operating wavelength.

B. Internal Noise

An important consideration regarding the selection of a detector
which is not shown in Fig., IX-1 is the internal noise levels of the
various detectors. The internal noise level is a function of the type
of cathode material, the cathode area, and the temperature., In general,

detectors employing an S-20 photosurface tend to have internal noise

levels 1 to 2 decades lower than tubes employing S-5 or S-17 photocathodes,

and 3 to 4 decades lower noise level than S-1 photocathodes.

The curve of background noise power illustrates the marked decrease
in this quantity (and hence an increase in system performance) as wave-
length is increased above ruby. However, ac wavelength is decreased
below ruby (to 0.53y for example) system performance is not markedly

degraded.
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The curve of photons per joule indicates the relative quantization
or "granularity” of both signal and noise. This granularity affects the
detection probability, since if more measurable events are received per
integration period, the statistical basis for estimating true signal and

background levels is improved.

It must be emphasized that in the absence of a detailed description
of the two systems whose performance is to be compared, the use of
Fig., IX~1 will yield only a general, qualitative answer. The reason for
this lack of accuracy lies in the fact that the ultimate criterion of
system performance is the maximization of detection probability. In order
to make use of the detection criteria discussed in Sec. V, a knowledge
of absolute value of received signal and background noise must be available;
hence system parameters must be defined before a detailed comparison of
system performance can proceed. For example, a qualitative comparison
between ruby (69432) and the second harmonic of neodymium (53002) may be

accomplished in the following way.

Assume a reference ruby system whose performance is such that
20 signal counts and 10 noise counts are produced in a partic-
ular range cell. Referring to Fig. V-9(a), for a false-alarm
probability of 0,01, 20 signal counts and 10 noise counts will
produce a detection probability between 0.95 and 0.99.

Further assume a 53003 system with a peak power output
equal to the ruby system. Referring to Fig. IX-1, the
quantum efficiency has increased by a factor of 4, the
number of quanta per joule has decreased by 0.79, thus
producing 63 signal counts in the particular range cell.

Regarding the background noise, Fig. IX-1 shows the

53002 system performance degraded by 0.9 (i.e. an increase
of background noise of 1.11). The changes in quantum
efficiency and the number of quanta per joule are 4 and
0.79 respectively, the number of noise counts in the
particular range cell will be 35,

Referring again to Fig. V-9(a), 63 signal counts in the
presence of 35 noise counts will produce a detection
probability in excess of 0,9999,

However, the previous assumption of a second harmonic
system with a peak power output equal to the ruby system
second harmonic crystal. At present, a realistic con-
version efficiency is about 15 percent. Taking into
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account this loss inherent in producing the second harmonic
would decrease the number of signal counts from 63 to 9.

The detection-probability curves of Fig. V-9(a) then show
that 9 counts of signal in the presence of 63 counts of
noise will produce a detection probability less than 0.6.
Thus, for equivalent primary power input, the performance
of the 5300A ruby second-harmonic laser will be inferior
to that of a 6943& lidar of the same general design.

C. CO2 Laser

The power levels, both pulsed and CW, which have recently been
obtained from a CO2 laser operating at 10.6y suggest that a lidar oper-
ating at this wavelength may have some value, if certain equipment limita-

tions can be overcome,

For example, output power levels of 100 to 300 watts are presently
obtainable only with a continuous replacement of the gas mixture in the
laser cavity. The operating lifetime of the laser is therefore presently

limited by the volume of gas available.

Another problem which may 1imit the usefulness of a 10.6y lidar in
orbital applications is choice of available detectors. For wavelengths
greater than approximately one micron, photoemissive detectors (such as
photomultipliers) are no longer effective, and photoconductive detectors
must be used., Typical detectors which are sensitive in the 10.6u region
include mercury-doped germanium and copper-doped germanium. The quantum
efficiency of these detectors is very high, approaching unity; however,
the internal noise of these detectors at 10.6py is approximately 4 to
5 orders of magnitude greater than that of typical photo-emissive de-
tectors operating in the visible portion of the spectrum. Additional
complicating factors are that both detectors must be cooled to cryogenic
temperatures; also, the speed of response of the mercury-doped germanium

detector (approximately 1 pus) may be too slow for some lidar applications.
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X VUSE OF SATELLITE-BORNE LASERS FOR PURPOSES OTHER THAN MEASURING
NONRESONANT BACKSCATTER AS A FUNCTION OF RANGE

A. General

With increasing frequency, suggestions may be expected to appear in
the literature for remote probing of various atmospheric parameters
through the use of satellite-borne laser systems of much higher sophisti-
cation than would be required for the relatively simple task of measuring
nonresonant backscatter as a function of range. It can certainly be
argued that in contemplating the launching and powering of an active op-
tical system, one should examine the incremental cost of having it perform
as many functions as possible. On the other hand, any system purporting
to provide information of meteorological utility must ultimately with-
stand the test of whether the data could be obtained more accurately or
less expensively by other means, including pure prediction on the basis
of past experience. There appears to be general agreement that this
implies measurement precision on the order of 1 percent for pressure and

density and of 1°K for temperature.

In this section two proposals, perhaps typical of others requiring

relatively precise spectrographic techniques, are reviewed.

B. Multiple-Frequency Systems

The possible advantages of using more than a single transmission
and reception wavelength have been pointed out by several authors. For
pulsed systems, the achievement of harmonically related wavelengths is
made relatively simple through the use of non-linear effects in certain
crystals, such as KDP. Other wavelengths may be obtained with Raman-
shifting materials at the laser output. A well-defined approach, employ-
ing frequencies relatively close to each other, has been proposed by

White, Carrier, and Nugent (1965),
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In their method, the required transmitter frequencies are obtained
by Raman shifting. From there on, the signals are handled much as if

there were two independent pulsed lidars.

One half of the system is intended to operate in the clear of any
absorption lines, with the other half at the center of an isolated
absorption line of the molecular species being sampled. The return from
the selectively absorbed lidar will show greater attenuation than the
lidar operating outside any region of selective absorption. A detailed
analysis of the differences in attenuation will, in principle, give
information as to the temperature and density of the gas as a function

of altitude,

A fairly involved derivation is presented, which leads from the
lidar equation for intensity versus range, through a variety of approxi-

mations, to a final result in the form

s(t) _ moX dl4n ¥(x)]

/T 2K02 dx

where S(T) is the absorption-line strength as a function of absolute
temperature T, Tra/K/2Ko2 is a constant which may be evaluated in the
laboratory or calculated, and d[4n¥(x)]/dx is the derivative, with

range, of the logarithm of the ratio of the lidar intensities at a given
range. The intent is to obtain a measured number representing the right-
hand side of the equation, and then to find the value of T which makes
the left-hand side equal to that number (values of S(T)AJ T would be

tabulated as a function of T in advance).

This apparently simple result hides a number of considerable dif-
ficulties. These arise from the nature of the approximations used in
the derivation, certain physical problems not mentioned in the derivation,
and instrumental difficulties. It should be remembered that these are

problems in the face of measurements of very high precision (1 percent

or 1),
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The approximations made in the derivation involve neglect of off-
line absorption, variation of Rayleigh and Mie scattering cross sections
and angular distributions over small wavelength intervals (5—10&), etc.
These approximations are usually justifiable, but most of them are not
necessarily true to better accuracy than 1 percent. Thus the composite
result is, on these grounds, likely to be in error by at least 1%

Oor more.

A potentially serious physical problem is that resulting from the
shift of the line center with pressure; it appears that absorption lines
both broaden in width and shift their centers proportionately with pres-
sure; the center shift is thought to be about 75 percent of the line
width at any pressure. Thus the wavelength of the line center will vary
significantly with altitude, and a transmitted lidar pulse will not stay
at the center of a line as it changes altitude (nears the earth from a
satellite). This vitiates the result given above by invalidating certain

steps in the derivation of that result.

It also appears that S({T), which must be known in advance, is dif-
ferent in form for different molecules, and frequently may not be very
strongly dependent on temperature. This implies that a small error in
evaluation of the right-hand side of the equation above would lead to a
larger error in determining the value of T corresponding to that evalua-
tion (i.e., a 1 percent error in d[4n Y{x)]/dx could lead to about

5 percent error in T).

By far the greatest difficulty comes in implementing such a system
for incorporation in a satellite., Since the demands for frequency measure-
ment and control are of great (O.le or better on the laser output at all
times during output and for repeated shots), a much more sophisticated
system than presently available is necessary. The demands for precision
measurement of the returned signal are equally difficult to meet., 1In
addition, the most careful laboratory determination must be made of
several physical parameters entering into the final results, These
instrumental difficulties are recognized by the authors of ihe suggested
technique, but it is not clear that they will be overcome in the fore-

seeable future.
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The measurements of density and pressure, in the proposed system,
follow from the results of temperature measurements, and since further
measurements and analysis must be accomplished to obtain these parameters,

the same difficulties apply to these measurements.

In summary, it seems unlikely that any operationally meaningful
system of this sort, with sufficient accuracy to be competitive with
present measurement techniques, will be forthcoming within a reasonable
period. Much additional work needs to be done experimentally to justify
the method in principle before serious consideration for satellite opera-

tion appears warranted.

C. Raman-Scattering Measurements

For the atmospheric physicist or meteorologist, Raman scattering in
the free atmosphere offers a potential for remote measurements of certain
atmospheric parameters, particularly density and temperature; at least
one proposal has been made for incorporating such a probe into a meteo-
rological satellite (Cooney, 1965). In this section, a brief discussion
is given concerning the nature of Raman scattering and the advisability

of its use in a satellite system.

Raman scattering is differentiated from Rayleigh scattering by the
fact that the wavelength of Raman-scattered radiation is different from
the incident radiation wavelength. This shift or wavelength can be
described from the point of view of a wave-molecule interaction or a

particle (photon)-molecule interaction.

From a wave point of view, the shift is due to the mixing of the
incoming wave (at a "carrier" frequency) with an oscillating change of
polarizability of a molecule. For a molecule with constant polarizability,
the scattered radiation is due to oscillations of polarization induced by
the incoming wave. Simple molecules, however, have natural vibrational
and rotational motions, whereby the polarizability is not constant, but
varies slightly in an oscillatory fashion. The natural frequency of
polarizability change mixes with the frequency of the incoming wave to

produce a scattered wave with the "carrier' frequency and sum and
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difference frequencies simultaneously placed on both sides of the carrier.

The magnitude of the shift depends on the natural frequencies of the mo-

lecular oscillations.

From perhaps a simpler point of view, the shift may be pictured as
particle-molecule interaction. On one hand, a photon may interact with
a molecule, transferring to the molecule enough energy to raise it to an
excited state. The photon then leaves with less energy. On the other
hand, a photon may interact with a molecule already in an excited state,
and the molecule may deliver energy to the photon. The molecule then
drops to a lower state, and the photon leaves with increased energy. If
the energy of the excited state is E = hvr then the two types of photons
will have energy Eo + E, and frequencies vo + vr, where E0 = hvo is the
energy of the incoming photon. 1In general it will only be possible
to excite one vibrational state or several rotational states, because of
the limited energy of the photon and the decreasing probability of inter-
action with increasing energy. In this picture, Rayleigh scattering

refers to elastic interaction, where the photon interacts but no energy

transfer occurs.

By whichever picture one uses, Raman-scattered radiation consists
of energy at a central frequency (that of the laser) and at frequencies
symmetrically displaced on both sides of center. The relative intensity
of the lines occurring to the side depends on the number of molecules
found in an excited state, which in turn depends on local temperature.
The absolute intensity of these lines depends on the molecule. For very
symmetric molecules it is largest, and for complex molecules weak; in
very few cases, however, does the intensity exceed 10—3 or 10—'4 times
the Rayleigh-scattered intensity. This difference of three or four
orders of magnitude is a serious obstacle in the way of using the Raman

eifect for meteorological probing from a satellite.

The two most significant applications probably are measurements of
density and temperature. Density would be measured by measuring the

returned power and deducing the density from a known single-molecule

cross section,
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This is the same procedure as for an ordinary lidar sounding except
that with sufficient care it would be possible to exclude the contribu-
tion of the aerosol component, since observations of the scattered com-
ponent would be made at wavelengths where only a particular molecule
would be capable of delivering energy. The "with sufficient care"
reservation could be quite significant, however, since compensation would
somehow have to be made for the one-way transmission losses through
aerosol-laden air for the incident beam and then back over the same path

at a different frequency.

Temperature measurements are proposed in terms of the relative in-

tensities of the shifted lines on both sides of the carrier frequency.

The remote measurement of temperature, by methods other than
inference from pressure and/or density measurements, is an attractive
goal. In principle Raman scattering allows such a measurement. This
method revolves about the measurement of the relative power of displaced

lines on either side of the center frequency.

The relative intensity of these lines depends on the temperature,
as described, since the number of molecules to be found in an excited
state depends on the absolute temperature., The line at frequency
v + v will be due only to photons having interacted with an excited
molecule. The line at v - Vr is due to photons interacting with molecules
in the ground state., The ratio of molecules in an excited state with

excitation energy Er to those in the ground state is

N -E hv
r

L - lexp —=| =
N, Pt | T kT

(for nondegenerate excited states). T is the absolute temperature, k is
the Boltzmann constant. This ratio is then the ratio of intensities for
the two displaced lines, assuming the cross section for inverse reactions

are equal.

T = const/ln(ll/lz)
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where I1 is the intensity (power) of the longer-wavelength line and 12
is the intensity of the shorter-wavelength line (integrated over a

suitable number of rotational lines).

The error in such a measurement of T is found by differentiating
the above expression on both sides and dividing by T. This fractional

error has the form
dt/T = (dr/R)(1/4nR)

where R is the ratio 11/12. This is close to saying that the fractional
error in temperature measurement is equal to the fractional error in

measurement of the intensity ratio.

Now if the intensity ratio can be measured to an accuracy of
n percent, then the temperature accuracy is 2,73 X n(°K), since one is
talking about absolute temperature. Thus 10-percent intensity accuracy
gives 27° temperature accuracy. The difficulties of making measurements
accurate to better than 10 percent are obvious; what would be desirable,
in fact, is measurements to less than l-percent accuracy in ratio,
allowing temperature measurements to within 2°K, to make the method
competitive with current techniques. The difficulty of making good sta-
tistical measurements on small numbers of photons is compounded by the
fact that the two lines being observed may be as much as ZOOOK apart,

demanding careful calibration of sensitivities, etc.

The conclusion is again that a very large effort, in terms of equip-
ment sophistication and power requirements, would be required to achieve
useful results. The required transmitter power, even if it could be
achieved, puts the system into the area where eye-damage considerations
become important (see Sec. V-F-1) unless the beam is spread so much that

finding a suitably cloud-free hole to fire through would become a problem,

Direct methods in common use measure densities (of the molecular
component) with accuracies of about 1 percent to 10 km and 10 percent

-~

to 100 km. Ordinary lidar is potentially more accurate at high altitudes

(perhaps 5 percent). At considerable cost a Raman lidar could single
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out a particular type of molecule and map its density with altitude.

This would be true only for N2 and 02,

any other molecular species are simply too small for accurate detection

however, since the densities of

. -6 -8
(their returns would average perhaps 10 = to 10 = of Rayleigh returns).

Thus the possible usage for density measurement would appear to be
limited to mapping of O2 and N2 densities with an overall accuracy of
perhaps 5 percent at best.

The cost would be that of providing 1000 to 10,000 times as much

transmitter power as would be required to make similar soundings of the

combined aerosol-molecular backscatter,

Temperature measurements present the same limitations and problems,
with the added requirement of greater precision in measurement of signal
power to achieve the same accuracy (5 percent) in temperature deter-

mination.

D. Polarization Measurements

The fact that the output of a lidar system may readily be completely
polarized, implies that perhaps new information could be drawn from polar-

ization measurements, with little additional effort in system design.

In the simplest kind of scattering situation (e.g., scattering from
water spheres or single atoms with isotropic polarizability) polarization
is unchanged in scattering. For molecules or larger particles with
anisotropic polarizability (or irregular shape), the direction of polar-

ization is altered by the scattering process.

In lidar observations of molecular gases, one would see a continuous
background cross-polarized component due to molecular depolarization.
(For air, this cross-polarized component would always be about 3 percent
of the ordinary component.) Superimposed on this would be any effects
due to particulate matter with depolarizing effects. The quantitative
measurement of this additional depolarization, however, cannot give in-
formation as to the type or number of particles responsible for it.

Thus, the utility of the information made available is limited.
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Essentially, the observation of cross-polarized components allows
one to discriminate between water clouds with spherical droplets and
dust or particulate aggregations, because of their different depolarizing

capabilities.

The advantages of this discrimination, for a meteorological satel-
lite, seem to be few., The particular applications one might consider
would be discrimination between dust or cirrus clouds and spherical-
droplet clouds, and discrimination against dust or water particles in
the measurement of densities of molecular or particulate components of

the atmosphere.

The SRI Mk II lidar was equipped for polarization measurements, but
spurious signals (presumably resulting from internal reflections) have
prevented effective use of this feature to date. To our knowledge no
other experimental lidar program currently makes use of polarization,
so that even the effects described above lack experimental verification.
Until some more elaborate use is proposed and demonstrated, the principal
value of a polarized receiver appears to lie in its ability to halve the

background light power passed on to the photodetector.

129



X1 COMPETING METHODS OF MEASURING CLOUD-TOP ALTITUDES

A technique has recently been devised for the determination of
cloud-top altitude by measurements from a satellite of reflected solar
radiation in and near the 76002 band of oxygen (Saiedy, Hilleary, and
Morgan, 1965; Wark and Mercer, 1965). The ratio of measurements can be
used to describe the transmittance through the oxygen in the intervening
sun-cloud-satellite path, Since the mass distribution of oxygen is
known, the attenuation can be interpreted in terms of pressure at the
reflecting surface. Even if errors in measurement and uncertainties in
computations of oxygen transmission are tolerable, scattering and
absorption in the cloud and their variations with cloud type and thick-
ness introduce significant effects on the deduced geometrical top
height. After a critical cloud thickness is exceeded, only very small
changes in spectral albedo are associated with large additional pene-~
trations through thicker clouds. More theoretical work is needed to
reduce the uncertainty caused by penetration of each cloud type for
arbitrary illumination and view angles, and by the effect of aerosols
in the path above the cloud top. Since statistical information on
temperature-height variation is available, it is not clear that the
deduced cloud-top pressures from daytime oxygen transmission measure-
ments will be significantly superior to the equivalent temperature-
height deduced from an infrared-window measurement. For example, the
standard deviation of temperature in the troposphere at 40°N in North
America is only about 6°C in any givea season, or the equivalent of about

1 km deviation in height.

The biggest difficulty in most of the remote-sensing techniques is
the unknown effect of tenuous (usually subvisible) cirrus cloud. Here
the lidar offers a distinct advantage in its capability for specifying
top heights and thicknesses of all tenuous clouds, as well as heights

and backscattering properties of other clouds.
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XITI CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

Present state-of-the-art limitations on power output will preclude
high-resolution cloud mapping on a global basis by lidar alone. However,
when used in conjunction with television or high-resolution infrared-
imaging sensors, the unique and highly accurate ranging capability of the
pulsed lidar would permit useful monitoring of the atmosphere--particularly

of the high cloud cover--with a realizable number of soundings per orbit.

Of the numerous meteorological uses which have been suggested for a
satellite-borne lidar, two stand out as being potentially capable of
yvielding data of very considerable operational and research significance
within the practical bounds imposed by equipment which might be placed
in orbit within the next few years with some reasonable expenditure of
effort. These are:

(1) To aid in the continuous monitoring of cirrus-cloud

cover over the earth.

(2) To assist the interpretation of infrared radiometry
measurements from satellites—-principally by resolving
ambiguities in altitude of the targets and by providing
measures of atmospheric transmission between the radi-
ometer and the targets.

These two applications are related, in that cirrus-cloud cover pre-

sents one of the most troublesome sources of error in atmospheric

radiometry.

Cirrus-cloud concentrations of meteorological interest, capable of
introducing several degrees of error into radiometric determinations of
temperature, can be so weak as to be characterized by optical back-
scatter cross sections only barely larger than those due to pure Rayleigh
molecular backscattering at the elevations where cirrus is found (6 to
14 km). The sensiiivity of thc catellite-—borne lidar should preferably

be made great enough to permit reliable detection down to that level.
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Achievement of the required order of performance appears barely
possible using some extension of presently known pulsed ruby lidar
techniques. Even so, the most useful performance will be achievable
only at night when background light caused by reflected sunlight is at

a minimum.

This limitation is not as serious as it might be since both high-
resolution infrared and high-sensitivity (starlight—illumination) televi-
sion are capable of providing the required companion pictures at night,
and since major cirrus systems are normally large and persistent enough
that nighttime-only sampling would still provide useful data. During
daylight, the same lidar system would permit detection of returns from
the earth itself or from the tops of large, relatively dense clouds.

With experience, these additional data might be used effectively. Day-
light performance equalling that described in this report for use at
night is not completely beyond reason, but the considerable additional

effort required does not appear warranted for an initial program.

Exclusive of the radiometric aspects, the principal projected uses
for lidar monitoring of cirrus-cloud cover are extensions of techniques
which have been developed by meteorologists over many years of using the
attendant cloud distributions to infer the condition of large-scale cir-
culation features such as extratropical cyclones, tropical cyclones
(hurricanes and typhoons ), pressure ridges and troughs, frontal systems,
jet streams, air masses and, to a lesser extent, the tropopause and strato-
sphere. Acceptance of cirrus as a diagnostic tool has persisted in spite
of the difficulty of observing it reliably from the ground, from air-
craft, or from satellites. A satellite lidar could conceivably provide
continuous quantitative measurement of cirrus extent and distribution

for use both by human analysts and in numerical models.

A fully operational lidar should be capable of achieving complete
coverage by scanning over the full width of each subsatellite swath with
a sampling density on the order of one sounding per degree of latitude
and longitude. The utility of the concepts involved could be demonstrated,

however, with an appreciably simpler system viewing at the nadir, making
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soundings approximately once every 60 nautical miles, and carefully

correlated with concurrent data from other sensors.

A pulsed ruby lidar capable of radiating one joule per pulse and
having an effective receiving aperture of at least one square meter would
be required to yield meteorologically useful soundings of simple back-
scatter as a function of range from a 1000 km orbit. The minimum pulse
rate which should be considered for a full-coverage (scanning) system
is approximately two per second and for a bare-minimum, downward-looking
system approximately one every 18 seconds. The equipment requirements
for all other applications considered--including principally the measure-
ment of gaseous temperature, density, or composition by spectfoscopic
means--call for orders of magnitude more power and/or receiving area,
and for much more stability and calibration. While there is no denying
that the desire for remote measurement of temperature and density
remains at or near the top of the meteorological "wish" list, competitive
employment of satellite lidar for such applications must be considered
only as an extremely remote possibility, at least until the practicability

of the simpler cloud-monitoring system has been demonstrated.

B. Recommendations

Current lidar technology appears capable of equipping a meteoro-
logical satellite with the ability to make at least a few soundings per
orbit of cloud densities and altitudes. Such soundings are useful for
both operations and research and are very difficult to obtain by any
other means. The prospects are good that improved laser efficiencies,
output powers, and reliabilities will permit better coverage and more
sophisticated measurements to be made in the future. It therefore seems
desirable to begin serious planning toward a meteorological satellite

lidar, having a minimum capability of ranging on cirrus clouds.

The project seems well adapted to a stepwise development sequence
involving, first, the obtaining of additional design data via measure-
ments from ground-based lidars; second, seiective scunding of high clond

from above by a relatively simple lidar carried in a high-altitude
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aircraft; third, operation of basically similar equipment from a manned
satellite; and fourth, incorporation of scanning and nonscanning systems

into unmanned satellites.

To realize such a program, the following problems need early

attention:

(1) Refined data are required on the volume backscatter coef-
ficients of real cirrus clouds and how they correlate with
weather, with radiometric data, and with the traditional
means of observing clouds, i.e. physical measurements and
optical visibility. Particularly important is a specifi-
cation of the allowable measurement errors for various
potential applications.

(2) Means should be sought for achieving a minimum of something
like two soundings per second from orbit. Unless one is
willing to tolerate staggering problems of primary power
supply and removal of excess heat, this will call for sig-
nificant improvements in laser efficiency.

One possibility here is to investigate the use of high-PRF,
Doppler, or even CW systems, since these systems in general
tend toward higher transmitter efficiency than is obtained
with present Q-switched ruby systems.

(3) Methods should be investigated for constructing satellite-
borne optical receivers having exceptionally large collect-
ing apertures (>10m2) but with only very modest angular
resolution. These receivers should be capable of being
scanned over relatively wide angles (approximately +50°) .

One approach would be to track together an array of many
smaller mirrors.

(4) Techniques need to be developed for on-board processing
and temporary storage of the return-signal characteristic
of pulsed lidars, which has a very large amplitude range.
Photoelectron-counting methods are applicable at the
low end of the range and very fast analog-to-digital con-
verters with logarithmic input response might be used at
the upper end. In the middle or transition region no
satisfactory method of data recording is known to the
authors. A single unified approach, useful over the
whole range, would of course be preferable and should
be sought.
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NATURE AND DISTRIBUTION OF CIRRUS CLOUD
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Appendix

NATURE AND DISTRIBUTION OF CIRRUS CLOUD

A, Introduction

This section provides a brief account of the nature and distribution
of cirrus cloud with special reference to its potential detection by
satellite-borne lidar. The material has been condensed from a much more

comprehensive but as yet unpublished study prepared under this contract.

O0f the numerous references used in compiling the data herein,
attention is drawn particularly to Stone (1957) and Borovikov (1961).
These publications, in themselves, represent surveys of the literature
on cirrus clouds and provide a convenient and comprehensive background

to the study of the physical aspects of cirrus cloud.

B. Structure and Distribution of Cirriform Clouds

All of the rationales and models of cirriform cloud distribution to
date recognize three genera: cirrus (thin, irregular, and wispy);
cirrocumulus (thin or thick, of marked configuration such as scaly
ripples or flakes); cirrostratus (thin or thick, rather uniform and
sheet-like), These three genera may appear simultaneously or individu-
ally., Cirrus is often present in layers and in various configurations
such as long parallel bands, stripes, streaks, or cross-bandings.
Certain meteorological significance is attached to these conditions,
primarily in the realm of formative processes and/or wind effects.

For example, layering signifies the presence of stratified "stable"
zones in the free atmosphere in which moisture is trapped; parallel
bands are ascribed to certain wave motions and wind shear conditions;
and cross-bandings reveal areas of changing winds and "unstable"

atmospheric conditions,

The physical constituents of these clouds vary fiom supcr-ceoled

water droplets to ice, with various mixtures in between (however, many
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cloud physicists define cirrus as a pure ice-crystal cloud). In addition,
the microstructure of cirrus clouds varies markedly in the type of
crystals that compose them and there is some evidence of a relationship
between the form of the cirriform clouds, their microphysics, and the

synoptic condition involved.

The water content in cirriform clouds is small but opinions on its
magnitude differ. Stone states that:

"The concentration of cirrus particles is very much smaller
than for droplets in water clouds--Weickmann estimates
170,000 to 500,000 crystals per cubic meter. The equivalent
water content is correspondingly low (0.1 g/m3) for ‘'pure
cirrus,' 0.4 for cirrostratus.”

Borovikov indicates somewhat lower values of water content:

"Auf'm Kample attempted to calculate the water content of
cirrus clouds from Trabert's formula assuming a visibility
of 2000m and crystal size of 200y in length and 20 in
diameter (which should, in his view, correspond to droplets
with r = 20p). The calculation yielded a water content of
0.03 g/m”, a figure which is probably closer to reality...

"According to the measurements of V. E. Minervin, in
crystal alto-stratus clouds the water content was often
as low as 0.002-0.003 g/mS., It is hardly likely that
in the optically far less dense cirrus clouds the water
content could be higher than this figure."
To date, data of this nature are not ordinarily available to the

meteorologist and, consequently this type of information is generally

not considered in practice.

Numerous studies have shown that the altitude of cirrus varies
with latitude. In the polar regions, the bases are usually found near
the 6 to 8 km level and the tops near 9 km; in the tropics the bases
lie at about 11 km and the tops near 15 km, On some occasions the

bases may lie as high as 17 to 20 km.,
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A summation of the data on cirrus cloud altitudes is given in

Table A-1:

Table A-1

CIRRUS CLOUD ALTITUDES AT CERTAIN GEOGRAPHICAL LOCATIONS
(After Borovikov)

Altitude of Ci-Cs(km)
Point Latitude average maximum

Bossekop (Northern Norway) 70°N 7.3

Pavlovsk (USSR)-Uppsala (Sweden) 60 7.6

Potsdam (West Germany)-Trappe (France){ 51 8.7 12.67
Blue Hill-Washington (USA) 40 10.15 15.01
Mera (Japan) 35 11.02 16.79
Manila (Philippines) 14 12.05 20.45
Jakarta (Indonesia) 6°s 11.04 18.60

Borovikov also presents data on the seasonal change of altitude of
cirrus clouds, shown in Fig. A-1., Although cirrus altitude increases
in summer, the seasonal variation is small. The higher altitudes of

the cirrus-cloud bases are just slightly

10 2
lower than the mean altitude of the
e 9 86 87
tropopause. Some cirriform cloudiness T
8t ; i’
has been found in the lower stratosphere s 24 ; .0
27+
but it can be considered rare. 3 sl 65 ¢ ’ ' 67
In thickness, the majority of cirri- ] 1 A 1
Winter Spring Summer Autumn
form cloudiness varies from a few meters
to 6 km, This is demonstrated in the FIG. A-1 AVERAGE ALTITUDES

various graphs of Fig. A-2. The major- OF BASE AND SUMMIT

ity of the cirrus, however, is less than

2 km thick and much is quite thin.

Of interest is the fact that vertical visibility through cirrus is

in general not uniquely related to vertical dimension. Soiie
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dimensionally thick clouds may be more transparent than dimensionally
thin but denser cloud. Kadlec reports:

"This overcast cirrus usually occurs in a layer from

4,000 to 6,000 feet thick but occasionally as much as

15,000 feet thick. It is called 'thin' because it allows

vertical visibility through the layer."”

It has been noted that the vertical visibility through cirrus is

often quite good (ground visible) at the same time that horizontal
visibility in cloud is less than a mile, even in cases when the cirrus

is of considerable vertical extent.

In area, cirriform cloudiness is extremely varied. Figure A-3
gives an estimate of the length of the east-west (Lx) and north-south
(Ly) components of the areas within which upper-level cloudiness can
occur in the case of moderately to fully developed cyclones (tropical
and extratropical) and jet streams. With respect to cyclone-generated
cirrus the components were obtained from an examination of a large number
of gridded TIROS photographs of cloud vortex patterns (Wiegman, et al),
and define approximately the latitude-longitude boxes that enclose the

major upper cloudiness. Data on jet-stream-generated cirrus were
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estimated by using a relationship between maximum wind speed and jet-

stream width to define an area over which cirrus can be anticipated.

Figure A-3 shows that in the region of tropical cyclones (0° to 30°N),
major cirrus can be expected to cover areas ranging in size from
300 x 300 nmi (5% X 5° latitude) to about 1200 X 1200 nmi (20° x 20°
latitude). In the region of extratropical cyclones (30°N to 70°N)
where large-scale cirrus can be expected most frequently, the areas
covered by upper cloudiness can be elongated in either the north-south
or the east-west direction. The more fully developed systems, however,
appear to cover areas that are larger in the east-west than in the
north-south direction. In general, dimensionsrange from Ly = 600 nmi
and L, = 300 nmi to L

y
fully developed extratropical cyclones, respectively.

= 1200 nmi and Ly = 1800 nmi for moderately and

The spatial components of areas connected with jet-stream cirrus
where the jet stream is oriented southwest-northeast range mostly from
80 X 80 nmi to 850 X 850 nmi or more. These values, on the average, are
smaller than those connected with cyclone-generated cirrus. Where the
jet stream is oriented zonally (west—east) the cirrus areas may range
from 120 to 1200 nmi in the north-south direction and may extend for
several thousand miles in the east-west direction. These higher values

are not common, however.

In the case of cirrus streaming from the top of a cumulonimbus

cloud, the area is often about 10 miles wide and 50 to 80 miles long.

Borovikov presents data to show that frontal cirrus encompasses
an area in excess of 60 X 600 nmi (see Table A-2). Along the front

these clouds may extend for its entire length.

These dimensions are important since they specify the size of the
areas over which detailed observations of cirrus from a satellite

platform may be of interest.

Since high clouds have not been studied in situ until comparatively
recent years, information on physical characteristics, conditions of

formation, and climatology is somewhat incomplete, particularly the
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Table A-2

PERCENT FREQUENCY OF DIFFERENT HORIZONTAL SPREADS
OF MASSES OF FRONTAL Ci-Cs
(After Borovikov)

Spread of Cloud Along Normal to Front (km)

Frontal type Number of
<200(201-400{401-600}601-800(801-1000}>1000
cases
Warm 15 49 31 5 98
Cold 26 59 15 118
Occluded 16 31 38 16 32

climatology. By and large, the most significant amounts of cirrus are
associated with cyclones, fronts, squall lines, ridges, and jet streams.
A reasonable, though approximate, climatology of cirrus can be inferred

from the climatology of these systems. An example is shown in Table A-3.

Table A-3

PERCENT FREQUENCY OF Ci-Cs AS A FUNCTION OF SYNOPTIC SITUATION
(After Borovikov)

Synoptic Situation

Uniform Air Mass Front Central

quasista-| Region of
tionary | Cyclone

Warm Cold Warm|ColdjOccluded

Frequency 43.0 25.7 85.9(79.8 82 .4 100 100
Number of cases 97 97 78 84 34 17 14
Average frequency 34.4 89.6

Since cirrus is formed by both advective and convective processes,*
it probably has the highest frequency of occurrence in the areas of the
world most favorable to cyclonic circulations, such as the Central United

States, Icelandic low regions, Aleutian low regions, and Central Russia.

* Cirrus may also form by nonadiabatic processes, but when and where this
occurs is indeterminate,
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The subtropical latitudes, particularly in the areas of the subtropical
jet stream, are favored regions for the production of cirrus. Cirrus

formations are plentiful within the equatorial convergence zoune.

It is believed that a realistic picture of the frequency of occur-
rance of extensive cirrus can also be obtained by charting the frequency
of occurrence of the systems that produce most of the cirrus. Assuming
that tropical and extratropical cyclone systems generate cirrus with a
probability of 100 percent (Borovikov, 1961), the frequency of occurrence
of these systems in space and time must closely portray the frequency of
occurrence of cirrus. Jet-stream systems are also important cirrus-
generating systems. However, there is evidence that less thanv50 percent
of observed jet streams are associated with significant cirrus (sawyer
and Ilett). Admittedly, such approximations tend to underestimate the
real frequency distribution, especially in the tropics, since certainly
more cyclones occur than are observed. Furthermore, no account is taken
of the "drift" of cirrus away from its parent system and the generation

of cirrus by isolated thunderstorms.

In Fig. A-4, percentage frequencies are given around the latitude
belt 0° to 30°N and 50° to 70°N for extratropical cyclones and jet
streams. ["Jet stream'" is defined as approximately straight flow with
a maximum wind speed (observed or geostropic) greater than 30m/s at
300 mb.] The frequencies shown should be representative, since the
jet-stream patterns for both summer and winter periods were similar to

known climatological patterns,

Although these frequencies of occurrence for the three major cirrus-
generating systemsv(tropical cyclones, extratropical cyclones and jet
streams)were derived from data that differ in spatial and temporal
detail, they are believed to be reasonable estimates of the average

occurrence of extensive cirrus cloudiness in the northern hemisphere.

Table A-4, which summarizes Fig. A-4, presents averages around the
latitude of belts of the frequency of occurrence of days with jet streams

and cyclones for summer and winter,
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Table A-4

PERCENT FREQUENCY OF JET-STREAM AND CYCLONE DAYS
FOR ANY 10° INCREMENT OF LONGITUDE
IN THE NORTHERN HEMISPHERE

Summer Winter

30°-50°N 50°-70°N | 30°-50°N 500 ~70°N

Jet Streams 27 26 55 43

Cyclones 12 23 15 18

Except for the latitude belt 50° to 70°N in summer, there are more than
twice as many days with 300 mb wind speed greater than 30m/s than there

are days with cyclones.,

Under the assumption that (L) 50 percent of the jet-stream cases
and all of the extratropical and tropical cyclone cases generate major
cirrus cloudiness, and that (2) some days with jet-stream-generated
cirrus do not coincide with days of cyclone-generated cirrus, the
longitudinal variations of the frequency of days that large-scale cirrus

can be anticipated is shown in Fig. A-S5.

The distribution of cirrus can be summarized by outlining on a
northern hemispheric map various categories of the frequency of
occurrence of days when large-scale cirrus can be anticipated in summer

and winter., Figure A-6 presents such a summary.

Figure A-6 shows that during the winter, frequency variations with
longitude are large. Between 50° and 70°N, a relative minimum in the
frequency (less than 20 percent) is found over Siberia and a relative
maximum (50 to 60 percent) over the northern Atlantic. A secondary
maximum is present over the northern Pacific Ocean. In the latitude
belt 30° to 50°N, a relative minimum (less than 30 percent) in the
frequency of occurrence of days with large-scale cirrus can be anticipated
over China, and relative maxima (60 percent) over eastern Japan and the

eastern United States.

During summer the longitudinal gradient of the frequency is less

than during winter. The general locations of relative maxima and
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WINTER

SUMMER

FIG. A-6 DISTRIBUTION OF PERCENTAGE FREQUENCY

OF LARGE-SCALE CIRRUS
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minima, however, does not change much. Only in the northern Pacific
Ocean, between 50° and 70°N, is the wintertime maximum replaced by a
secondary minimum. Siberia still shows a pronounced minimum (20 percent)
and the northern Atlantic still shows a pronounced maximum (50 percent).
Between 30° and 50°N, relative maxima (30 to 40 percent) are found again
over Japan and the United States. In the tropics,'areas where large-
scale cirrus can be anticipated coincide with the well-known areas of
tropical storm and hurricane (typhoon) activity. The frequency of occur-

rence is well below 20 percent.

Because of the large variation in percentage frequency with season
and with longitude for each season shown in Fig. A-6, a programmed
operation of a satellite-borne lidar may be preferable to an automatic

operation on a routine basis.

C. Cirrus Coverage Related to Synoptic Pattern

It is from the association of cirrus with synoptic patterns that
the meteorologist derives his estimate of the significance of cirrus.
With reference to circulation features, cirrus systems are associated
with extratropical cyclones, frontal systems, and tropical cyclomnes
(hurricanes). In regard to the latter, cirrus has been used as evidence
of the development state, with absence of cirrus indicating decay of
the storm. Cirrus occurrence is also intimately associated with the
jet stream, both polar and subtropical, being found generally on the
warm or high-pressure side of the jet stream and parallel to it; in
pattern it may occur in sheets, bands or transverse waves. In the
mid-latitudes cirrus is particularly prevalent on the east side of the
low-pressure trough up to the center line of the downstream high-pressure
ridge, but in the subtropics the cirrus will often extend throughout

the ridge configuration.

The satellite gives the meteorologist the opportunity to view the
broad-scale distribution of clouds with these synoptic patterns, but
at the same time Iorces him to change his frame of reference with

respect to cloud characteristics. Illustrations of this broad-scale
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cirrus distribution with selected synoptic patterns are shown in the

following examples.

Figure A-7 is a view of a mature extratropical cyclone-cloud
vortex, located approximately 200 nmi south of Adak, Aleutian Islands.
The extent of the cirrus-cloud cover through the northwest and northeast
sectors of the cyclone is approximately 400 nmi. This includes the
cirrus cloud on the outer fringes of the storm, as well as that over

the bright frontal-cloud spiral nearer the center of the frame.

Note the medium-grey, veil-like appearance of the cirrus. Low
underlying clouds are visible through the thinner or more transparent
. cirrus clouds on the outer edge of the cyclone. Over the frontal arm
of the cyclone, where the cloud spiral appears as grey-white, a positive
identification of cirrus is more difficult. In this area of a cyclome,

cirrus clouds usually overlie altostratus clouds.

Figure A-8 is a mosaic of 4 frames showing a cirrus-cloud system
accompanying a polar jet stream, located over the Sea of Okhotsk. Lower
clouds are visible beneath the cirrus. The thin stripes in the cirrus
are oriented parallel to the jet-stream flow, which is centered through
the center of the frames., The width of the band is about 200 nmi
(370 km) and the length is 1465 nmi (2700 km ). Note that the cirrus
is formed in very narrow stripes, parallel to the main flow, quite

fibrous, with a well-marked leading edge of the system (center of frames).

Radiosonde plots for stations 32150, 47412, 47582, and 47646 indicate
a double tropopause near the 200 mb level (40,000) and again near the
100 mb level (53,000 ft), characteristic of stations on the high-
pressure side of the polar jet stream., The strong wind speeds on
47412 would suggest that this station is closest to the center of the
jet stream., The sounding at 32150 shows strong stability, possibly the
tropopause, beginning at the 300 mb level (30,000 ft). The configura-
tion of this sounding is typical of those through the northern or low-

pressure side of the jet stream. Unfortunately, there is only one low-

level wind to substantiate this.

152




@ CUMULONIMBUS WITH CIRRUS STREAMERS

SNOW COVER ON SIERRA NEVADAS
COASTAL STRATUS

B3 2%,] CUMULUS OVER TERRAIN

—s — LOW LEVEL WIND FLOW

—®—® UPPER LEVEL WIND FLOW

M MONTEREY BAY



VORTEX CENTER

L
////] FRONTAL BAND (Middie and High Clouds)

%] CUMULIFORM CLOUDS (Celis) IN COLD AIR MASS

CIRRUS SHIELD

— &= UPPER LEVEL WIND FLOW

= | OW LEVEL WIND FLOW

WYW OCCLUDED FRONT



TIROS VII ORBIT 33I2/3306TI FRAME 28 0I136GMT 29 JANUARY I1964

WIDE ANGLE LENS

SCALE: 1 in. = 180 nm near mid-frame

FIG. A7 EXTRATROPICAL CYCLONE CLOUD SYSTEM




WILSAS @NOTD WV3IALS-L3Ir LNO¥d dV10d 8-V "Old

1961 Tradv 9
IWD L2€2  G2€N/92€h 34TaI0 IIA SOVIL

ov- 0%~ - omn.-.-..----.-..-.--.-

9611149V L

1W90000
V1INV 28GLY
L 1 L

§

Q

0§

8

g

2
3
H

No0S

3,571

nn\\\\ﬁ*ﬂ\\i

X
A

2
3
&

H

N U .m\
g

v961 1ddv L |
1W90000 |
080447S 219LY |

”?

154




An example of subtropical jet-stream cirrus is shown in Fig. A-9,
which presents two frames (24 hours apart) showing a cirrus-cloud
system accompanying the subtropical jet stream off West Africa. In the
left-hand frame the visible jet-stream cirrus is approximately 100 nmi
wide. The length of this band cannot be measured due to the orbital
limits; however, it is at least 600 nmi, It crosses the Atlantic coast of
Africa at approximately 24°N and is oriented southwest-northeast. Note

the small-scale transverse waves along the major axis.

In the right-hand frame the cirrus band in the intervening 24 hours
has moved south, crossing the African coast near Cap Blanc. Its appear-
ance has changed substantially. The transverse bands are obscured or
obliterated, and seem to have concentrated in narrow stripes (less than
60 miles wide). The orientation has remained about the same with the

extent of the cirrus exceeding 500 nmi.

An example of tropical-cyclone cloud systems is shown in Fig. A-10
which presents photographic frames of tropical storms in pretyphoon
and typhoon stages. In both storms the pretyphoon stage has the charac-
teristic feature of a dense smooth cirrus shield over the center of the
storm (upper frames). These cirrus shields may be quite extensive
(more than 400 miles across) and rather thick, particularly towards

the storm center.

The cirrus shield tends to band and/or break up after strong

intensification has been reached (1ower frames).

One of the prime progenitors of cirrus in air-mass situations is
the thunderstorm, particularly when present as a squall line. The
cirrus appearing from this latter phenomenon may cover an area equal
to that of an extra-tropical cyclone. A view of air-mass cirrus due
to thunderstorm activity is shown in Fig. A-11, which shows cirrus cloudv
at the tops of cumulonimbus cloud, streaming in the direction of the

prevailing high level wind (see upper right of frame). The cirrus
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TROPICAL STORM AMY
TROPICAL STORM RUTH

TIROS Y ORBIT 1024/1024T, FRAME 22
TIROS Y ORBIT 798/797 T FRAME 16 2250GMT 29 AUGUST 1962
0430GMT 14 AUGUST 1962 MAXIMUM WIND 45KTS
MAXIMUM WIND 60KTS

TYPHOON RUTH
TIROS ¥ ORBIT 855/855T, FRAME 13

TYPHOON AMY

TIROSY ORBIT 1096/1096T FRAME 27
O35IGMT I8 AUGUST 1962

2326GMT 3 SEPTEMBER 1962
MAXIMUM WIND 95KTS MAXIMUM WIND I130KTS

FIG. A-10 TROPICAL CYCLONE CLOUD SYSTEMS

157




TIROS
v ORBIT049q FRAME 20 2252GMT 22 JUNE 1962
MEDIUM ANGLE LENS

SCALE: 1 in. = 75 nm near mid-frame

‘ FIG. A-11  AIR MASS CLOUD SYSTEM




cover, though patchy, covers an area of approximately 9500 square miles,
located over the Sierra Nevada. This frame presents a good example of
cunulonimbus clouds being formed by terrain in an air mass. The
presence of cirrus implies glaciation of the cloud and a rather high

vertical extent.
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GLOSSARY¥

Attenuation Coefficient: A measure of the space rate of diminution

of any transmitted electromagnetic radiation. This quantity ¢ may be
identified in a form of Beer's Law,

I = Io’exp - 0x,

where I is the flux density at the selected point in space, I . is

the flux density at the source, x is the distance from the source, and
0 is the attenuation coefficient. Often the attenuation coefficient
is specified only when the attenuation is known to be due to both
absorption and scattering or when it is impossible to determine

which is the cause. "Extinction coefficient” is a term often used
synonymously, but rigorously it applies only to diminution of visible
radiation when measured in luminous units.

Brewster Angle: That angle of incidence for which a plane polarized
monochromatic light wave, whose E vector lies entirely in the plane

of incidence, is not reflected by a transparent dielectric-i.e., exper-
iences total refractive transmission. At this angle of incidence,

the corresponding reflection path is along the zero-reradiation
direction of the wave induced electron oscillations in the dielectric.
The Brewster angle for common glass is ~57°.

Cavity, Laser: An optically resonant and hence mode-selecting low-
loss structure in which laser action occurs through the buildup of
electromagnetic field intensity upon multiple reflection.

Cyclone: A closed atmospheric circulation having a sense of rotation
about the local vertical the same as that of the earth's rotation: that
is, as viewed from above, counterclockwise in the Northern Hemisphere,
clockwise in the Southern Hemisphere, undefined at the equator. A
cyclone's direction of rotation is opposite to that of an anticyclone.
Because cyclonic circulation and relative low atmospheric pressure usually
coexist, in common practice the terms cyclone and low are used inter-
changeably. Also, because cyclones are nearly always accompanied by

inclement (often destructive) weather, they are frequently referred to
simply as storms.

=
The laser terminology is adapted from Seed (1965) and the meteoro-
logical terminology from Huschke (1959).
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Cyclone, Extratropical: Any cyclonic-scale storm that is not a trop-
ical cyclone, usually referring only to the migratory frontal cyclones
of middle and high latitudes.

Cyclone, Frontal: Any cyclone assoc1ated w1th a front; often used
synonymously with 'wave cyclone' or with "extratropical cyclone (as
opposed to tropical cyclones, which are nonfrontal)

Cyclone, Tropical: The general term for a cyclone that originates
over the tropical oceans. At maturity, the tropical cyclone is one
of the most intense and feared storms of the world; winds exceeding
175 knots (200 mph) have been measured, and its rains are torrential.

Cyclone, Wave: A cyclone which forms and moves along a front. The
circulation about the cyclone center tends to produce a wavelike
deformation of the front.

Front: The interface or transition zone between two air masses of
different density. Since the temperature distribution is the most
important regulator of atmospheric density, a front almost invari-
ably separates air masses of different temperature. Along with the
basic criteria of differing densities and temperatures, many other
features may distinguish a front, such as a pressure trough, a
change in wind direction, a moisture discontinuity, and certain
characteristic cloud and precipitation forms.

Front Occluded: (Also "occlusion," "frontal occlusion”): A composite
of two fronts, as a cold front overtakes a warm front or quasistation-
ary front. This is a common process in the late stages of wave-
cyclone development, but is not limited to occurrence within a wave
cyclone.

Inversion: The condition in which an upper energy level is more
densely populated than a lower level. Since an inverted population
is not in thermal equilibrium, a pump is required to create and sus-
tain this necessary, though not sufficient, condition for laser
action,

Lapse Rate: The decrease of an atmospheric variable with height, the
variable being temperature unless otherwise specified.

Laser: Acronym for Light Amplification by Stimulated Emission of Radia-
tion. A device capable of absorbing energy “from an external source and
reradiating an appropriate portion of it at essentially a single wave-
length in an extremely intense beam of high spectral purity. See defini-
tions of Two-Level, Three-Level, and Four-Level Systems at end of Glossary;
also Storage Laser and Q-Switched Laser.
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Noise, Quantum: A random variation or noise signal due to fluctua-
tions in the average rate of incidence of quanta on a detector. The
basic electromagnetic quantum of noise power is just one photon per
electromagnetic mode.

. . . . 1 .
Noise, Thermal (also "Johnson noise,’ "Nyquist noise"): Noise gener-
ated in resistive media due to the random motions of current carriers.

Optical Pumping: The use of visible light to raise the energy level
of electrons in a laser material. Typically, short-duration, high-
intensity output from an electronic flash lamp is used. This energy
is mostly absorbed by the impurity atoms in an otherwise transparent
host solid-e.g., ruby. '

Pump: An external source used to increase the electron population of
excited energy states. A laser requires a pump to produce inversion.

Q-Switched Laser: See Storage Laser

Raman Effect: The virtual absorption and prompt (<1078s) re-emission
of optical radiation at various higher and lower frequencies which
are characteristic of the material. The emission at lower frequency
is known as Stokes radiation. The somewhat surprising emission at
higher frequencies (which leaves the material's electrons in a lower
energy level than initially) is known as Anti-Stokes radiation. The
Raman effect is appreciable in intense optical fields only. Under
moderate irradiation, the Raman-active material is essentially trans-
parent at the incident optical frequency, VO’ although the effect
becomes strong when VO is close to characteristic absorption lines.

Raman Laser: Produced when a Raman-active material is placed in the
resonant cavity of an "initial laser” or is otherwise strongly illu-
minated with intense, coherent 'drive power'' to induce radiation of
Raman frequencies.

Ridge: (Also "wedge'.): An elongated area of relatively high atmos-
pheric pressure, almost always associated with and most clearly
identified as an area of maximum anticyclonic curvature of wind
flow. The locus of this maximum curvature is called the ridge line.

Spiking: Short, multiple, irregular bursts of laser-output radiation.
Spiking is characteristic of pulse lasers, especially flash-pumped
solid-dielectric types (e.g., ruby, neodymium in glass). Spike
duration is typically 0.2 to 2 us.

Spontaneous Ruissicn: The loss of energy of an excited bound electron
by the random emission of radiation ( fluorescence).
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Squall: 1) A strong wind characterized by a sudden onset, a duration
on the order of minutes, and a rather sudden decrease in speed. 2)
( Common nautical definition) A severe local storm considered as a
whole, i.e., winds, cloud mass, thunder and lightning, and precipita-
tion (if any).

Squall Line: Any nonfrontal line or narrow band of active thunder-
storms (with or without squalls); a mature instability line.

Stimulated Emission: The emission of radiation by a system going

from an excited electron energy level to a lower energy level under

the influence of a radiation field. The emitted radiation is in

phase with the stimulating radiation and produces a negative-absorption
condition.

Storage Laser: Any laser which stores unusually high energy prior to
discharge. For example, a ''storage diode laser’ is one in which some
carriers are electrically excited for a time longer than the lasing
period. This results in power gain--i.e., during some portion of the
operating time more optical power is emitted than electrical power
applied. Storage solid-state lasers are called giant-pulse lasers
because of the immense peak powers obtainable (at some trade-off in
efficiency). Most storage methods are based on Q-switching (con—
trolling the Q of the laser cavity to delay the time development of

a giant laser pulse), but other techniques, such as double pumping
and line broadening, are also used. (Note that conditions for a
storage laser are essentially opposite to those for a good, low-
threshold laser.)

Threshold (also "threshold operation,’ "thresholding”): A character-
istic operating feature of all lasers denoting the abrupt onset of
coherent laser output at a specific pump power input. Below thres-
hold there is no coherent emission; at threshold the coherent output
rises from zero, usually linearly with pump power.

Tropopause: The boundary between the troposphere and the stratosphere,
usually characterized by an abrupt change of lapse rate. The change
is in the direction of increased atmospheric stability from regions
below to regions above the tropopause. Its height varies from 15 to
20 km in the tropics to about 10 km in the polar regions. In polar
regions in winter it is often difficult or impossible to determine
just where the tropopause lies, since under some conditions there is
no abrupt change in lapse rate at any height.

Trough: An elongated area of relatively low atmospheric pressure; the
opposite of a ridge. This term is commonly used to distinguish the
above from the closed circulation of a low, or cyclone.

Two-Level System: A laser which uses only two electron energy levels.
Electrons in the ground state (Level 1) are pumped to the excited
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state (Level 2). The electrons then surrender their energy by stimu-
lated emission and return to the ground state.

Three-Level System: A laser involving three electronic energy levels.
The ground state (lLevel 1) is pumped to Level 3. This is followed by
a transition to the Upper Laser Level 2, which in turn is followed by
stimulated emission back to the ground state.

Four-Level System: A laser involving four electronic energy levels.

The ground state (Level 1) is pumped to Level 4, from which the excited
electrons make a downward transition to the Upper Laser Level 3 (or
Metastable Level 3). Then, stimulated transition to the Lower Laser
Level 2 occurs followed by rapid decay to the ground state. The four-
level system has the advantage that the pump level and ground state are
isolated from the laser action. Therefore, inversion between Levels 2
and 3 requires a relatively small population of excited electrons.
Here, the requirement for inversion is that T32 2 T21’ where the T's
represent transition decay times.
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